// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. using System; using System.IO; using System.Runtime.InteropServices; using OpenCvSharp; using fastdeploy; namespace Test { public class TestYOLOv5 { public static void Main(string[] args) { if (args.Length < 3) { Console.WriteLine( "Usage: infer_demo path/to/model path/to/image run_option, " + "e.g ./infer_model ./yolov5.onnx ./test.jpeg 0" ); Console.WriteLine( "The data type of run_option is int, 0: run with cpu; 1: run with gpu"); return; } string model_path = args[0]; string image_path = args[1]; RuntimeOption runtimeoption = new RuntimeOption(); int device_option = Int32.Parse(args[2]); if(device_option==0){ runtimeoption.UseCpu(); }else{ runtimeoption.UseGpu(); } fastdeploy.vision.detection.YOLOv5 model = new fastdeploy.vision.detection.YOLOv5(model_path, "", runtimeoption, ModelFormat.ONNX); if(!model.Initialized()){ Console.WriteLine("Failed to initialize.\n"); } Mat image = Cv2.ImRead(image_path); fastdeploy.vision.DetectionResult res = model.Predict(image); Console.WriteLine(res.ToString()); Mat res_img = fastdeploy.vision.Visualize.VisDetection(image, res, 0, 1, 0.5f); Cv2.ImShow("result.png", res_img); Cv2.WaitKey(0); } } }