English | [简体中文](README_CN.md) # Visual Model Deployment This directory provides the deployment of various visual models, including the following task types | Task Type | Description | Predicted Structure | |:-------------- |:----------------------------------- |:-------------------------------------------------------------------------------- | | Detection | Target detection. Input the image, detect the object’s position in the image, and return the detected box coordinates, category, and confidence coefficient | [DetectionResult](../../docs/api/vision_results/detection_result.md) | | Segmentation | Semantic segmentation. Input the image and output the classification and confidence coefficient of each pixel | [SegmentationResult](../../docs/api/vision_results/segmentation_result.md) | | Classification | Image classification. Input the image and output the classification result and confidence coefficient of the image | [ClassifyResult](../../docs/api/vision_results/classification_result.md) | | FaceDetection | Face detection. Input the image, detect the position of faces in the image, and return detected box coordinates and key points of faces | [FaceDetectionResult](../../docs/api/vision_results/face_detection_result.md) | | FaceAlignment | Face alignment(key points detection).Input the image and return face key points | [FaceAlignmentResult](../../docs/api/vision_results/face_alignment_result.md) | | KeypointDetection | Key point detection. Input the image and return the coordinates and confidence coefficient of the key points of the person's behavior in the image | [KeyPointDetectionResult](../../docs/api/vision_results/keypointdetection_result.md) | | FaceRecognition | Face recognition. Input the image and return an embedding of facial features that can be used for similarity calculation | [FaceRecognitionResult](../../docs/api/vision_results/face_recognition_result.md) | | Matting | Matting. Input the image and return the Alpha value of each pixel in the foreground of the image | [MattingResult](../../docs/api/vision_results/matting_result.md) | | OCR | Text box detection, classification, and text box content recognition. Input the image and return the text box’s coordinates, orientation category, and content | [OCRResult](../../docs/api/vision_results/ocr_result.md) | | MOT | Multi-objective tracking. Input the image and detect the position of objects in the image, and return detected box coordinates, object id, and class confidence | [MOTResult](../../docs/api/vision_results/mot_result.md) | | HeadPose | Head posture estimation. Return head Euler angle | [HeadPoseResult](../../docs/api/vision_results/headpose_result.md) | ## FastDeploy API Design Generally, visual models have a uniform task paradigm. When designing API (including C++/Python), FastDeploy conducts four steps to deploy visual models - Model loading - Image pre-processing - Model Inference - Post-processing of inference results Targeted at the vision suite of PaddlePaddle and external popular models, FastDeploy provides an end-to-end deployment service. Users merely prepare the model and follow these steps to complete the deployment - Model Loading - Calling the `predict`interface When deploying visual models, FastDeploy supports one-click switching of the backend inference engine. Please refer to [How to switch model inference engine](../../docs/en/faq/how_to_change_backend.md).