""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import random import time import unittest from unittest.mock import Mock import paddle from fastdeploy.engine.request import RequestMetrics, RequestOutput from fastdeploy.output.token_processor import TokenProcessor paddle.set_device("cpu") # Mock classes and constants needed for the test class MockConfig: class ParallelConfig: local_data_parallel_id = 0 class SpeculativeConfig: method = None class ModelConfig: enable_logprob = False class SchedulerConfig: name = "default" class CacheConfig: enable_prefix_caching = False enable_output_caching = False block_size = 64 parallel_config = ParallelConfig() speculative_config = SpeculativeConfig() model_config = ModelConfig() scheduler_config = SchedulerConfig() cache_config = CacheConfig() class MockTask: def __init__(self): self.request_id = "test_request_1" self.eos_token_ids = [2] self.output_token_ids = [] self.messages = "Test prompt" self.num_cached_tokens = 0 self.disaggregate_info = None self.prefill_chunk_info = None self.prefill_chunk_num = 0 self.llm_engine_recv_req_timestamp = time.time() self.ic_req_data = {} self.prompt_token_ids_len = 0 self.trace_carrier = {} now = time.time() self.metrics = RequestMetrics( arrival_time=now, preprocess_start_time=now - 0.2, preprocess_end_time=now - 0.1, scheduler_recv_req_time=now + 0.1, inference_start_time=now + 0.2, ) def get(self, key: str, default_value=None): if hasattr(self, key): return getattr(self, key) elif hasattr(self, "sampling_params") and hasattr(self.sampling_params, key): return getattr(self.sampling_params, key) else: return default_value class MockResourceManager: def __init__(self): self.stop_flags = [False] self.tasks_list = [MockTask()] self.to_be_rescheduled_request_id_set = set() def info(self): return "Mock resource manager info" def reschedule_preempt_task(self, task_id): pass class MockCachedGeneratedTokens: def __init__(self): self.cache = [] def put_results(self, results): self.cache.extend(results) # Constants RECOVERY_STOP_SIGNAL = -3 MAX_BSZ = 512 K = 20 MAX_DRAFT_TOKENS = 6 SPECULATE_MAX_BSZ = 256 class TestTokenProcessorProcessBatchOutput(unittest.TestCase): def setup_token_processor(self, speculative_decoding=False, use_logprobs=False): """Helper method to setup TokenProcessor with different configurations""" cfg = MockConfig() cfg.speculative_config.method = "mtp" if speculative_decoding else None cfg.speculative_config.num_speculative_tokens = 1 cfg.model_config.enable_logprob = use_logprobs processor = TokenProcessor.__new__(TokenProcessor) processor.cfg = cfg processor.cached_generated_tokens: MockCachedGeneratedTokens = MockCachedGeneratedTokens() processor.executor = Mock() processor.engine_worker_queue = Mock() processor.split_connector = Mock() processor.resource_manager = MockResourceManager() task1 = MockTask() task2 = MockTask() processor.resource_manager.tasks_list = [task1, task2] processor.resource_manager.stop_flags = [False, False] processor.tokens_counter = {task1.request_id: 0, task2.request_id: 0} processor.total_step = 0 processor.number_of_output_tokens = 0 processor.prefill_result_status = {} processor.use_logprobs = use_logprobs processor.num_draft_tokens = 0 processor.num_accepted_tokens = 0 processor.num_emitted_tokens = 0 processor.max_num_emitted_tokens = 0 processor.speculative_stats_step = 0 processor.total_step_per_request = {} processor.accept_token_num_per_head_per_request = {} processor.accept_token_num_per_head = [0] * MAX_DRAFT_TOKENS # processor._recycle_resources = Mock() if speculative_decoding: if use_logprobs: processor.output_tokens = paddle.full( shape=[MAX_BSZ * MAX_DRAFT_TOKENS * (K + 1) + MAX_BSZ + 3, 1], fill_value=2, dtype="int64", ) processor.output_scores = paddle.full( shape=[MAX_BSZ * MAX_DRAFT_TOKENS * (K + 1), 1], fill_value=0.0, dtype="float32", ) processor.output_ranks = paddle.full( shape=[MAX_BSZ * MAX_DRAFT_TOKENS], fill_value=0, dtype="int64", ) else: processor.output_tokens = paddle.full( shape=[SPECULATE_MAX_BSZ * MAX_DRAFT_TOKENS + SPECULATE_MAX_BSZ + 2], fill_value=2, dtype="int64", ) elif use_logprobs: processor.output_tokens = paddle.full(shape=[MAX_BSZ * (K + 1) + 2, 1], fill_value=2, dtype="int64") processor.output_scores = paddle.full(shape=[MAX_BSZ * (K + 1), 1], fill_value=0.0, dtype="float32") processor.output_ranks = paddle.full(shape=[MAX_BSZ], fill_value=0, dtype="int64") else: processor.output_tokens = paddle.full(shape=[MAX_BSZ + 2, 1], fill_value=2, dtype="int64") return processor def test_speculative_decoding_use_logprobs(self): """Test basic speculative decoding scenario""" processor = self.setup_token_processor(speculative_decoding=True, use_logprobs=True) # stop_flag processor.output_tokens[0, 0].set_tensor(paddle.to_tensor(2)) # mtype target = 3, decode = 4 processor.output_tokens[1, 0].set_tensor(paddle.to_tensor(3)) # batch processor.output_tokens[2, 0].set_tensor(paddle.to_tensor(2)) # accept_num processor.output_tokens[3, 0].set_tensor(paddle.to_tensor(3)) processor.output_tokens[4, 0].set_tensor(paddle.to_tensor(3)) batch = processor.output_tokens[2, 0] mtype = processor.output_tokens[3, 0] accept_num = [int(num[0]) for num in processor.output_tokens[3 : batch + 3]] # init print(f"batch:{batch}, mtype:{mtype} accept_num: {accept_num}") for i in range(batch): for j in range(accept_num[i]): token_index = 3 + MAX_BSZ + i * MAX_DRAFT_TOKENS * (K + 1) + j * (K + 1) score_index = i * MAX_DRAFT_TOKENS * (K + 1) + j * (K + 1) print(f"batch:{i}, accept:{j} token_index: {token_index} score_index: {score_index}") for k in range(K + 1): processor.output_tokens[token_index + k].set_tensor(paddle.to_tensor(random.randint(100, 100000))) processor.output_scores[score_index + k].set_tensor(paddle.to_tensor(random.random())) processor.output_ranks[j].set_tensor(paddle.to_tensor(1)) processor._process_batch_output() batch_result_buffer: list[RequestOutput] = processor._batch_result_buffer for i, request_output in enumerate(batch_result_buffer): assert isinstance(request_output, RequestOutput) assert len(request_output.outputs.token_ids) == accept_num[i] assert len(request_output.outputs.top_logprobs) == 3 # tokens, scores, ranks assert len(request_output.outputs.top_logprobs[0][0]) == K + 1 assert len(request_output.outputs.top_logprobs[1][0]) == K + 1 assert len(request_output.outputs.top_logprobs[2]) == accept_num[i] # mtype = 4 processor.output_tokens[1, 0].set_tensor(paddle.to_tensor(4)) processor._process_batch_output() cached_generated_tokens: MockCachedGeneratedTokens = processor.cached_generated_tokens for c in cached_generated_tokens.cache: assert isinstance(request_output, RequestOutput) assert len(request_output.outputs.token_ids) == accept_num[i] assert len(request_output.outputs.top_logprobs) == 3 assert len(request_output.outputs.draft_top_logprobs) == 3 # tokens, scores, ranks assert len(request_output.outputs.draft_top_logprobs[0][0]) == K + 1 assert len(request_output.outputs.draft_top_logprobs[1][0]) == K + 1 assert len(request_output.outputs.draft_top_logprobs[2]) == accept_num[i] if __name__ == "__main__": unittest.main(verbosity=2, buffer=False)