// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2010 Manuel Yguel // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include #include #include "main.h" using namespace std; namespace Eigen { namespace internal { template struct increment_if_fixed_size { enum { ret = (Size == Dynamic) ? Dynamic : Size + 1 }; }; } } template void realRoots_to_monicPolynomial_test(int deg) { typedef internal::increment_if_fixed_size<_Deg> Dim; typedef Matrix<_Scalar, Dim::ret, 1> PolynomialType; typedef Matrix<_Scalar, _Deg, 1> EvalRootsType; PolynomialType pols(deg + 1); EvalRootsType roots = EvalRootsType::Random(deg); roots_to_monicPolynomial(roots, pols); EvalRootsType evr(deg); for (int i = 0; i < roots.size(); ++i) { evr[i] = std::abs(poly_eval(pols, roots[i])); } bool evalToZero = evr.isZero(test_precision<_Scalar>()); if (!evalToZero) { cerr << evr.transpose() << endl; } VERIFY(evalToZero); } template void realRoots_to_monicPolynomial_scalar() { CALL_SUBTEST_2((realRoots_to_monicPolynomial_test<_Scalar, 2>(2))); CALL_SUBTEST_3((realRoots_to_monicPolynomial_test<_Scalar, 3>(3))); CALL_SUBTEST_4((realRoots_to_monicPolynomial_test<_Scalar, 4>(4))); CALL_SUBTEST_5((realRoots_to_monicPolynomial_test<_Scalar, 5>(5))); CALL_SUBTEST_6((realRoots_to_monicPolynomial_test<_Scalar, 6>(6))); CALL_SUBTEST_7((realRoots_to_monicPolynomial_test<_Scalar, 7>(7))); CALL_SUBTEST_8((realRoots_to_monicPolynomial_test<_Scalar, 17>(17))); CALL_SUBTEST_9((realRoots_to_monicPolynomial_test<_Scalar, Dynamic>( internal::random(18, 26)))); } template void CauchyBounds(int deg) { typedef internal::increment_if_fixed_size<_Deg> Dim; typedef Matrix<_Scalar, Dim::ret, 1> PolynomialType; typedef Matrix<_Scalar, _Deg, 1> EvalRootsType; PolynomialType pols(deg + 1); EvalRootsType roots = EvalRootsType::Random(deg); roots_to_monicPolynomial(roots, pols); _Scalar M = cauchy_max_bound(pols); _Scalar m = cauchy_min_bound(pols); _Scalar Max = roots.array().abs().maxCoeff(); _Scalar min = roots.array().abs().minCoeff(); bool eval = (M >= Max) && (m <= min); if (!eval) { cerr << "Roots: " << roots << endl; cerr << "Bounds: (" << m << ", " << M << ")" << endl; cerr << "Min,Max: (" << min << ", " << Max << ")" << endl; } VERIFY(eval); } template void CauchyBounds_scalar() { CALL_SUBTEST_2((CauchyBounds<_Scalar, 2>(2))); CALL_SUBTEST_3((CauchyBounds<_Scalar, 3>(3))); CALL_SUBTEST_4((CauchyBounds<_Scalar, 4>(4))); CALL_SUBTEST_5((CauchyBounds<_Scalar, 5>(5))); CALL_SUBTEST_6((CauchyBounds<_Scalar, 6>(6))); CALL_SUBTEST_7((CauchyBounds<_Scalar, 7>(7))); CALL_SUBTEST_8((CauchyBounds<_Scalar, 17>(17))); CALL_SUBTEST_9( (CauchyBounds<_Scalar, Dynamic>(internal::random(18, 26)))); } EIGEN_DECLARE_TEST(polynomialutils) { for (int i = 0; i < g_repeat; i++) { realRoots_to_monicPolynomial_scalar(); realRoots_to_monicPolynomial_scalar(); CauchyBounds_scalar(); CauchyBounds_scalar(); } }