// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2012 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include #include #include #include "main.h" template void verify_euler(const Matrix& ea, int i, int j, int k) { typedef Matrix Matrix3; typedef Matrix Vector3; typedef AngleAxis AngleAxisx; using std::abs; Matrix3 m(AngleAxisx(ea[0], Vector3::Unit(i)) * AngleAxisx(ea[1], Vector3::Unit(j)) * AngleAxisx(ea[2], Vector3::Unit(k))); Vector3 eabis = m.eulerAngles(i, j, k); Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * AngleAxisx(eabis[2], Vector3::Unit(k))); VERIFY_IS_APPROX(m, mbis); /* If I==K, and ea[1]==0, then there no unique solution. */ /* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */ if ((i != k || ea[1] != 0) && (i == k || !internal::isApprox(abs(ea[1]), Scalar(EIGEN_PI / 2), test_precision()))) VERIFY((ea - eabis).norm() <= test_precision()); // approx_or_less_than does not work for 0 VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1))); VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI)); VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[1]); VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI)); VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]); VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI)); } template void check_all_var(const Matrix& ea) { verify_euler(ea, 0, 1, 2); verify_euler(ea, 0, 1, 0); verify_euler(ea, 0, 2, 1); verify_euler(ea, 0, 2, 0); verify_euler(ea, 1, 2, 0); verify_euler(ea, 1, 2, 1); verify_euler(ea, 1, 0, 2); verify_euler(ea, 1, 0, 1); verify_euler(ea, 2, 0, 1); verify_euler(ea, 2, 0, 2); verify_euler(ea, 2, 1, 0); verify_euler(ea, 2, 1, 2); } template void eulerangles() { typedef Matrix Matrix3; typedef Matrix Vector3; typedef Array Array3; typedef Quaternion Quaternionx; typedef AngleAxis AngleAxisx; Scalar a = internal::random(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); Quaternionx q1; q1 = AngleAxisx(a, Vector3::Random().normalized()); Matrix3 m; m = q1; Vector3 ea = m.eulerAngles(0, 1, 2); check_all_var(ea); ea = m.eulerAngles(0, 1, 0); check_all_var(ea); // Check with purely random Quaternion: q1.coeffs() = Quaternionx::Coefficients::Random().normalized(); m = q1; ea = m.eulerAngles(0, 1, 2); check_all_var(ea); ea = m.eulerAngles(0, 1, 0); check_all_var(ea); // Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi]. ea = (Array3::Random() + Array3(1, 0, 0)) * Scalar(EIGEN_PI) * Array3(0.5, 1, 1); check_all_var(ea); ea[2] = ea[0] = internal::random(0, Scalar(EIGEN_PI)); check_all_var(ea); ea[0] = ea[1] = internal::random(0, Scalar(EIGEN_PI)); check_all_var(ea); ea[1] = 0; check_all_var(ea); ea.head(2).setZero(); check_all_var(ea); ea.setZero(); check_all_var(ea); } EIGEN_DECLARE_TEST(geo_eulerangles) { for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(eulerangles()); CALL_SUBTEST_2(eulerangles()); } }