// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/segmentation/ppseg/model.h" #include "fastdeploy/utils/unique_ptr.h" namespace fastdeploy { namespace vision { namespace segmentation { PaddleSegModel::PaddleSegModel(const std::string& model_file, const std::string& params_file, const std::string& config_file, const RuntimeOption& custom_option, const ModelFormat& model_format) : preprocessor_(config_file), postprocessor_(config_file) { if(model_format == ModelFormat::SOPHGO) { valid_sophgonpu_backends = {Backend::SOPHGOTPU}; } else{ valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER, Backend::ORT, Backend::LITE}; valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT}; } valid_rknpu_backends = {Backend::RKNPU2}; valid_timvx_backends = {Backend::LITE}; valid_kunlunxin_backends = {Backend::LITE}; valid_ascend_backends = {Backend::LITE}; runtime_option = custom_option; runtime_option.model_format = model_format; runtime_option.model_file = model_file; runtime_option.params_file = params_file; initialized = Initialize(); } std::unique_ptr PaddleSegModel::Clone() const { std::unique_ptr clone_model = fastdeploy::utils::make_unique(PaddleSegModel(*this)); clone_model->SetRuntime(clone_model->CloneRuntime()); return clone_model; } bool PaddleSegModel::Initialize() { if (!InitRuntime()) { FDERROR << "Failed to initialize fastdeploy backend." << std::endl; return false; } return true; } bool PaddleSegModel::Predict(cv::Mat* im, SegmentationResult* result) { return Predict(*im, result); } bool PaddleSegModel::Predict(const cv::Mat& im, SegmentationResult* result) { std::vector results; if (!BatchPredict({im}, &results)) { return false; } *result = std::move(results[0]); return true; } bool PaddleSegModel::BatchPredict(const std::vector& imgs, std::vector* results) { std::vector fd_images = WrapMat(imgs); // Record the shape of input images std::map>> imgs_info; if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, &imgs_info)) { FDERROR << "Failed to preprocess input data while using model:" << ModelName() << "." << std::endl; return false; } reused_input_tensors_[0].name = InputInfoOfRuntime(0).name; if (!Infer(reused_input_tensors_, &reused_output_tensors_)) { FDERROR << "Failed to inference while using model:" << ModelName() << "." << std::endl; return false; } if (!postprocessor_.Run(reused_output_tensors_, results, imgs_info)) { FDERROR << "Failed to postprocess while using model:" << ModelName() << "." << std::endl; return false; } return true; } } // namespace segmentation } // namespace vision } // namespace fastdeploy