""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from __future__ import annotations import math import os from dataclasses import dataclass, field from typing import TYPE_CHECKING, List, Optional, Tuple import paddle from paddle.nn.functional.flash_attention import flash_attn_unpadded from fastdeploy.model_executor.layers.attention.ops import ( get_block_shape_and_split_kv_block, init_kv_signal_per_query, init_signal_layerwise, open_shm_and_get_meta_signal, ) from fastdeploy.platforms import current_platform if current_platform.is_cuda(): from fastdeploy.model_executor.ops.gpu import ( decode_mla_write_cache, multi_head_latent_attention, prefill_mla_write_cache, ) if TYPE_CHECKING: from fastdeploy.model_executor.forward_meta import ForwardMeta from fastdeploy.config import FDConfig from fastdeploy.model_executor.layers.attention.attention import Attention from fastdeploy.model_executor.layers.attention.base_attention_backend import ( AttentionBackend, AttentionMetadata, ) from fastdeploy.model_executor.layers.attention.utils import init_rank_and_device_id def yarn_get_mscale(scale=1, mscale=1): """ """ if scale <= 1: return 1.0 return 0.1 * mscale * math.log(scale) + 1.0 @dataclass class MLAAttentionMetadata(AttentionMetadata): """ MLAAttentionMetadata for Multi-Layer Attention """ max_len_kv: paddle.Tensor = None set_max_lengths: int = -1 encoder_batch_ids: paddle.Tensor = None encoder_tile_ids_per_batch: paddle.Tensor = None encoder_num_blocks: paddle.Tensor = None kv_batch_ids: paddle.Tensor = None kv_tile_ids_per_batch: paddle.Tensor = None kv_num_blocks: paddle.Tensor = None decoder_batch_ids: paddle.Tensor = None decoder_tile_ids_per_batch: paddle.Tensor = None decoder_num_blocks: paddle.Tensor = None _dtype: paddle.dtype = paddle.bfloat16 encoder_max_partition_size: int = 32768 max_partition_size: int = 32768 block_tables: Optional[paddle.Tensor] = None rotary_embs: Optional[paddle.Tensor] = None attn_mask: Optional[paddle.Tensor] = None encoder_block_shape_q: Optional[paddle.Tensor] = None decoder_block_shape_q: Optional[paddle.Tensor] = None _fuse_kernel_compute_dtype: str = "bf16" # pd_disaggregation kv_signal_metadata: Optional[paddle.Tensor] = None kv_signal_data_list: List[paddle.Tensor] = field(default_factory=list) class MLAAttentionBackend(AttentionBackend): """ MLA Attention Backend implementation. """ def __init__( self, fd_config: FDConfig, kv_num_heads: int, num_heads: int, head_dim: int, ) -> None: """ MLAAttentionBackend __init__ """ super().__init__() self.attention_metadata: MLAAttentionMetadata = None # 基础配置 self.block_size: int = fd_config.parallel_config.block_size self.max_seq_len: int = fd_config.parallel_config.max_model_len self.rope_theta: float = ( 10000.0 if fd_config.model_config.rope_theta is None else fd_config.model_config.rope_theta ) self.rope_3d: bool = getattr(fd_config.model_config, "rope_3d", False) self.causal: bool = getattr(fd_config.model_config, "causal", True) self.speculative_method: str = fd_config.speculative_config.method self.use_speculate: bool = self.speculative_method is not None self.speculate_max_draft_token_num: int = fd_config.speculative_config.num_speculative_tokens self.keep_pd_step_flag: bool = fd_config.speculative_config.model_type == "mtp" self.num_layers_draft_model: int = int(fd_config.speculative_config.method in ["mtp"]) self.kv_num_heads: int = kv_num_heads self.num_heads: int = num_heads self.head_dim: int = fd_config.model_config.head_dim self.num_layers: int = fd_config.model_config.num_hidden_layers # For Multi Head Latent Attention self.kv_lora_rank: int = fd_config.model_config.kv_lora_rank self.qk_rope_head_dim: int = fd_config.model_config.qk_rope_head_dim self.qk_head_dim: int = fd_config.model_config.qk_nope_head_dim + fd_config.model_config.qk_rope_head_dim self.attn_softmax_scale: float = self.qk_head_dim**-0.5 if fd_config.model_config.rope_scaling: mscale_all_dim = fd_config.model_config.rope_scaling.get("mscale_all_dim", False) # 1.0 scaling_factor = fd_config.model_config.rope_scaling["factor"] # 40 mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim)) self.attn_softmax_scale = self.attn_softmax_scale * mscale * mscale self.pd_disaggregation_mode: str = fd_config.parallel_config.pd_disaggregation_mode self.start_layer_index: int = fd_config.model_config.start_layer_index self.device_id: int = os.getenv("CUDA_VISIBLE_DEVICES", None) self.rank, self.device_id = init_rank_and_device_id(fd_config) def init_attention_metadata(self, forward_meta: ForwardMeta): """Initialize attention metadata hence all layers in the forward pass can reuse it.""" metadata = MLAAttentionMetadata() metadata.encoder_block_shape_q = 64 metadata.decoder_block_shape_q = 16 metadata.max_partition_size = 32768 metadata.encoder_max_partition_size = self.max_seq_len metadata._dtype = paddle.get_default_dtype() if metadata._dtype == "bfloat16": metadata._fuse_kernel_compute_dtype = "bf16" elif metadata._dtype == "float16": metadata._fuse_kernel_compute_dtype = "fp16" elif metadata._dtype == "float32": metadata._fuse_kernel_compute_dtype = "fp32" metadata.block_tables = forward_meta.block_tables metadata.rotary_embs = forward_meta.rotary_embs metadata.attn_mask = forward_meta.attn_mask metadata.pre_caches_length = forward_meta.pre_caches_length ( metadata.encoder_batch_ids, metadata.encoder_tile_ids_per_batch, metadata.encoder_num_blocks, metadata.kv_batch_ids, metadata.kv_tile_ids_per_batch, metadata.kv_num_blocks, metadata.decoder_batch_ids, metadata.decoder_tile_ids_per_batch, metadata.decoder_num_blocks, metadata.max_len_kv, metadata.set_max_lengths, ) = get_block_shape_and_split_kv_block( forward_meta.seq_lens_encoder, forward_meta.seq_lens_decoder, forward_meta.seq_lens_this_time, metadata.encoder_block_shape_q, metadata.decoder_block_shape_q, self.num_heads // self.kv_num_heads, self.block_size, self.speculate_max_draft_token_num + 1, ) # MLA metadata.max_enc_len_this_time = metadata.set_max_lengths[1] metadata.max_dec_len_this_time = metadata.set_max_lengths[2] forward_meta.max_enc_len_this_time = metadata.set_max_lengths[1] forward_meta.max_dec_len_this_time = metadata.set_max_lengths[2] # pd_disaggregation metadata.kv_signal_data_list = [None] * self.num_layers if self.pd_disaggregation_mode == "per_chunk": if not self.keep_pd_step_flag: init_kv_signal_per_query( forward_meta.seq_lens_encoder, forward_meta.seq_lens_this_time, forward_meta.seq_lens_decoder, self.rank, self.num_layers + self.num_layers_draft_model, ) elif self.pd_disaggregation_mode == "per_query": metadata.kv_signal_metadata = open_shm_and_get_meta_signal( self.rank, int(self.device_id), self.keep_pd_step_flag ) self.attention_metadata: AttentionMetadata = metadata forward_meta.decoder_batch_ids.copy_(metadata.decoder_batch_ids, False) forward_meta.decoder_tile_ids_per_batch.copy_( metadata.decoder_tile_ids_per_batch, False) def get_attntion_meta(self) -> AttentionMetadata: """get_attntion_meta""" return self.attention_metadata def get_kv_cache_shape(self, max_num_blocks: int) -> Tuple[int, int, int, int]: """ Calculate kv cache shape for MLA """ return ( max_num_blocks, 1, self.block_size, self.kv_lora_rank + self.qk_rope_head_dim, ) def forward_extend( self, q: paddle.Tensor, k: paddle.Tensor, v: paddle.Tensor, qkv: paddle.Tensor, compressed_kv: paddle.Tensor, k_pe: paddle.Tensor, layer: Attention, forward_meta: ForwardMeta, ) -> paddle.Tensor: """ Prefill阶段的前向传播 """ metadata = self.attention_metadata if self.pd_disaggregation_mode == "per_query": metadata.kv_signal_data_list[layer.layer_id] = init_signal_layerwise( metadata.kv_signal_metadata, layer.layer_id + self.start_layer_index, ) latent_cache = forward_meta.caches[layer.layer_id] if hasattr(forward_meta, "caches") else None # 写入缓存 prefill_mla_write_cache( compressed_kv, k_pe, latent_cache, forward_meta.seq_lens_encoder, forward_meta.seq_lens_decoder, forward_meta.batch_id_per_token, forward_meta.cu_seqlens_q, metadata.block_tables, "none", getattr(forward_meta, "max_input_length", -1), ) # Flash注意力计算 fmha_out = flash_attn_unpadded( q, k, v, forward_meta.cu_seqlens_q, forward_meta.cu_seqlens_k, metadata.max_enc_len_this_time, metadata.max_enc_len_this_time, self.attn_softmax_scale, causal=True, training=False, )[0] return fmha_out def forward_decode( self, q: paddle.Tensor, k: paddle.Tensor, v: paddle.Tensor, qkv: paddle.Tensor, compressed_kv: paddle.Tensor, k_pe: paddle.Tensor, layer: Attention, forward_meta: ForwardMeta, ) -> paddle.Tensor: """ Decode阶段的前向传播 """ metadata = self.attention_metadata if self.pd_disaggregation_mode == "per_query": metadata.kv_signal_data_list[layer.layer_id] = init_signal_layerwise( metadata.kv_signal_metadata, layer.layer_id + self.start_layer_index, ) latent_cache = forward_meta.caches[layer.layer_id] if hasattr(forward_meta, "caches") else None # 获取推测解码参数 speculate_decoder = self.speculative_method is not None speculate_max_tokens = self.speculate_max_draft_token_num # 写入缓存 decode_mla_write_cache( compressed_kv, k_pe, latent_cache, forward_meta.seq_lens_decoder, forward_meta.seq_lens_encoder, forward_meta.batch_id_per_token, forward_meta.cu_seqlens_q, metadata.block_tables, "none", self.max_seq_len, speculate_decoder, ) # 多头潜在注意力计算 fmha_out = multi_head_latent_attention( q, latent_cache, latent_cache, forward_meta.seq_lens_encoder, forward_meta.seq_lens_decoder, forward_meta.seq_lens_this_time, forward_meta.cu_seqlens_q, forward_meta.batch_id_per_token, metadata.block_tables, metadata.encoder_batch_ids, metadata.encoder_tile_ids_per_batch, metadata.encoder_num_blocks, metadata.kv_batch_ids, metadata.kv_tile_ids_per_batch, metadata.kv_num_blocks, forward_meta.decoder_batch_ids, forward_meta.decoder_tile_ids_per_batch, metadata.decoder_num_blocks, metadata.decoder_num_blocks, # PaddleNLP 传入的是 decoder_num_blocks_cpu metadata.max_enc_len_this_time, metadata.max_dec_len_this_time, metadata.max_len_kv, None, # attn_mask None, # qkv_bias None, # qkv_out_scales None, # cache_k_quant_scales None, # cache_v_quant_scales None, # cache_k_dequant_scales None, # cache_v_dequant_scales None, # cache_k_zp None, # cache_v_zp None, # out_shifts None, # out_smooths metadata._fuse_kernel_compute_dtype, "none", # cache_quant_type self.kv_lora_rank, self.max_seq_len, self.attn_softmax_scale, 0.0, # quant_max_bound 0.0, # quant_min_bound 0.0, # out_linear_in_scale speculate_max_tokens, True, # causal speculate_decoder, ) return fmha_out def forward_mixed( self, q: paddle.Tensor, k: paddle.Tensor, v: paddle.Tensor, qkv: paddle.Tensor, compressed_kv: paddle.Tensor, k_pe: paddle.Tensor, layer: Attention, forward_meta: ForwardMeta, ) -> paddle.Tensor: """ Mixed模式的前向传播 """ metadata = self.attention_metadata speculate_decoder = self.speculative_method is not None speculate_max_tokens = self.speculate_max_draft_token_num if self.pd_disaggregation_mode == "per_query": metadata.kv_signal_data_list[layer.layer_id] = init_signal_layerwise( metadata.kv_signal_metadata, layer.layer_id + self.start_layer_index, ) latent_cache = forward_meta.caches[layer.layer_id] if hasattr(forward_meta, "caches") else None if k is not None: prefill_mla_write_cache( compressed_kv, k_pe, latent_cache, forward_meta.seq_lens_encoder, forward_meta.seq_lens_decoder, forward_meta.batch_id_per_token, forward_meta.cu_seqlens_q, metadata.block_tables, "none", self.max_seq_len, ) # FA fmha_out = flash_attn_unpadded( q, k, v, forward_meta.cu_seqlens_q, forward_meta.cu_seqlens_k, metadata.max_enc_len_this_time, metadata.max_enc_len_this_time, self.attn_softmax_scale, causal=True, training=False, )[0] return fmha_out # Decode if k is None: decode_mla_write_cache( compressed_kv, k_pe, latent_cache, forward_meta.seq_lens_decoder, forward_meta.seq_lens_encoder, forward_meta.batch_id_per_token, forward_meta.cu_seqlens_q, metadata.block_tables, "none", self.max_seq_len, speculate_decoder, ) # 多头潜在注意力计算 fmha_out = multi_head_latent_attention( q, latent_cache, latent_cache, forward_meta.seq_lens_encoder, forward_meta.seq_lens_decoder, forward_meta.seq_lens_this_time, forward_meta.cu_seqlens_q, forward_meta.batch_id_per_token, metadata.block_tables, metadata.encoder_batch_ids, metadata.encoder_tile_ids_per_batch, metadata.encoder_num_blocks, metadata.kv_batch_ids, metadata.kv_tile_ids_per_batch, metadata.kv_num_blocks, forward_meta.decoder_batch_ids, forward_meta.decoder_tile_ids_per_batch, metadata.decoder_num_blocks, metadata.decoder_num_blocks, # PaddleNLP 传入的是 decoder_num_blocks_cpu metadata.max_enc_len_this_time, metadata.max_dec_len_this_time, metadata.max_len_kv, None, # attn_mask None, # qkv_bias None, # qkv_out_scales None, # cache_k_quant_scales None, # cache_v_quant_scales None, # cache_k_dequant_scales None, # cache_v_dequant_scales None, # cache_k_zp None, # cache_v_zp None, # out_shifts None, # out_smooths metadata._fuse_kernel_compute_dtype, "none", # cache_quant_type self.kv_lora_rank, self.max_seq_len, self.attn_softmax_scale, 0.0, # quant_max_bound 0.0, # quant_min_bound 0.0, # out_linear_in_scale speculate_max_tokens, True, # causal speculate_decoder, ) return fmha_out