// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/ocr/ppocr/structurev2_table_preprocessor.h" #include "fastdeploy/function/concat.h" #include "fastdeploy/utils/perf.h" #include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h" namespace fastdeploy { namespace vision { namespace ocr { StructureV2TablePreprocessor::StructureV2TablePreprocessor() { resize_op_ = std::make_shared(-1, -1); std::vector value = {0, 0, 0}; pad_op_ = std::make_shared(0, 0, 0, 0, value); std::vector mean = {0.485f, 0.456f, 0.406f}; std::vector std = {0.229f, 0.224f, 0.225f}; normalize_op_ = std::make_shared(mean, std, true); hwc2chw_op_ = std::make_shared(); } void StructureV2TablePreprocessor::StructureV2TableResizeImage(FDMat* mat, int batch_idx) { float img_h = float(rec_image_shape_[1]); float img_w = float(rec_image_shape_[2]); float width = float(mat->Width()); float height = float(mat->Height()); float ratio = max_len / (std::max(height, width) * 1.0); int resize_h = int(height * ratio); int resize_w = int(width * ratio); resize_op_->SetWidthAndHeight(resize_w, resize_h); (*resize_op_)(mat); (*normalize_op_)(mat); pad_op_->SetPaddingSize(0, int(max_len - resize_h), 0, int(max_len - resize_w)); (*pad_op_)(mat); (*hwc2chw_op_)(mat); batch_det_img_info_[batch_idx] = {int(width), int(height), resize_w, resize_h}; } bool StructureV2TablePreprocessor::Run(std::vector* images, std::vector* outputs, size_t start_index, size_t end_index, const std::vector& indices) { if (images->size() == 0 || end_index <= start_index || end_index > images->size()) { FDERROR << "images->size() or index error. Correct is: 0 <= start_index < " "end_index <= images->size()" << std::endl; return false; } std::vector mats(end_index - start_index); for (size_t i = start_index; i < end_index; ++i) { size_t real_index = i; if (indices.size() != 0) { real_index = indices[i]; } mats[i - start_index] = images->at(real_index); } return Run(&mats, outputs); } bool StructureV2TablePreprocessor::Apply(FDMatBatch* image_batch, std::vector* outputs) { batch_det_img_info_.clear(); batch_det_img_info_.resize(image_batch->mats->size()); for (size_t i = 0; i < image_batch->mats->size(); ++i) { FDMat* mat = &(image_batch->mats->at(i)); StructureV2TableResizeImage(mat, i); } // Only have 1 output Tensor. outputs->resize(1); // Get the NCHW tensor FDTensor* tensor = image_batch->Tensor(); (*outputs)[0].SetExternalData(tensor->Shape(), tensor->Dtype(), tensor->Data(), tensor->device, tensor->device_id); return true; } } // namespace ocr } // namespace vision } // namespace fastdeploy