# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd import cv2 import os import pickle import numpy as np model_url = "https://bj.bcebos.com/fastdeploy/tests/yolov6_quant.tgz" fd.download_and_decompress(model_url, ".") def test_quant_mkldnn(): model_path = "./yolov6_quant" model_file = os.path.join(model_path, "model.pdmodel") params_file = os.path.join(model_path, "model.pdiparams") input_file = os.path.join(model_path, "input.npy") output_file = os.path.join(model_path, "mkldnn_output.npy") option = fd.RuntimeOption() option.use_paddle_backend() option.use_cpu() option.set_model_path(model_file, params_file) runtime = fd.Runtime(option) input_name = runtime.get_input_info(0).name data = np.load(input_file) outs = runtime.infer({input_name: data}) expected = np.load(output_file) diff = np.fabs(outs[0] - expected) thres = 1e-05 assert diff.max() < thres, "The diff is %f, which is bigger than %f" % ( diff.max(), thres) def test_quant_ort(): model_path = "./yolov6_quant" model_file = os.path.join(model_path, "model.pdmodel") params_file = os.path.join(model_path, "model.pdiparams") input_file = os.path.join(model_path, "input.npy") output_file = os.path.join(model_path, "ort_output.npy") option = fd.RuntimeOption() option.use_ort_backend() option.use_cpu() option.set_ort_graph_opt_level(1) option.set_model_path(model_file, params_file) runtime = fd.Runtime(option) input_name = runtime.get_input_info(0).name data = np.load(input_file) outs = runtime.infer({input_name: data}) expected = np.load(output_file) diff = np.fabs(outs[0] - expected) thres = 1e-05 assert diff.max() < thres, "The diff is %f, which is bigger than %f" % ( diff.max(), thres) def test_quant_trt(): model_path = "./yolov6_quant" model_file = os.path.join(model_path, "model.pdmodel") params_file = os.path.join(model_path, "model.pdiparams") input_file = os.path.join(model_path, "input.npy") output_file = os.path.join(model_path, "trt_output.npy") option = fd.RuntimeOption() option.use_trt_backend() option.use_gpu() option.set_model_path(model_file, params_file) runtime = fd.Runtime(option) input_name = runtime.get_input_info(0).name data = np.load(input_file) outs = runtime.infer({input_name: data}) expected = np.load(output_file) diff = np.fabs(outs[0] - expected) thres = 1e-05 assert diff.max() < thres, "The diff is %f, which is bigger than %f" % ( diff.max(), thres)