# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import logging from .... import FastDeployModel, ModelFormat from .... import c_lib_wrap as C class RetinaFace(FastDeployModel): def __init__(self, model_file, params_file="", runtime_option=None, model_format=ModelFormat.ONNX): # 调用基函数进行backend_option的初始化 # 初始化后的option保存在self._runtime_option super(RetinaFace, self).__init__(runtime_option) self._model = C.vision.facedet.RetinaFace( model_file, params_file, self._runtime_option, model_format) # 通过self.initialized判断整个模型的初始化是否成功 assert self.initialized, "RetinaFace initialize failed." def predict(self, input_image, conf_threshold=0.7, nms_iou_threshold=0.3): return self._model.predict(input_image, conf_threshold, nms_iou_threshold) # 一些跟模型有关的属性封装 # 多数是预处理相关,可通过修改如model.size = [640, 480]改变预处理时resize的大小(前提是模型支持) @property def size(self): return self._model.size @property def variance(self): return self._model.variance @property def downsample_strides(self): return self._model.downsample_strides @property def min_sizes(self): return self._model.min_sizes @property def landmarks_per_face(self): return self._model.landmarks_per_face @size.setter def size(self, wh): assert isinstance(wh, (list, tuple)),\ "The value to set `size` must be type of tuple or list." assert len(wh) == 2,\ "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format( len(wh)) self._model.size = wh @variance.setter def variance(self, value): assert isinstance(v, (list, tuple)),\ "The value to set `variance` must be type of tuple or list." assert len(value) == 2,\ "The value to set `variance` must contatins 2 elements".format( len(value)) self._model.variance = value @downsample_strides.setter def downsample_strides(self, value): assert isinstance( value, list), "The value to set `downsample_strides` must be type of list." self._model.downsample_strides = value @min_sizes.setter def min_sizes(self, value): assert isinstance( value, list), "The value to set `min_sizes` must be type of list." self._model.min_sizes = value @landmarks_per_face.setter def landmarks_per_face(self, value): assert isinstance( value, int), "The value to set `landmarks_per_face` must be type of int." self._model.landmarks_per_face = value