# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """UT for set_stop_value""" import paddle from fastdeploy.model_executor.ops.gpu import get_mm_split_fuse input_ids = [] image_type_ids = [] grid_thw = [] def split_grid(origin_grid_thw): # 划分grid_thw,该函数用于视频场景 # origin_grid_thw = [6, 10, 12] ---> [2, 10, 12, 2, 10, 12, 2, 10, 12] grid_thw = [] for t, h, w in origin_grid_thw: if t > 2: num_groups = t // 2 remainder = t % 2 for _ in range(num_groups): grid_thw.extend([2, h, w]) if remainder > 0: grid_thw.extend([remainder, h, w]) else: grid_thw.extend([t, h, w]) return grid_thw if __name__ == "__main__": grid_thw = [[6, 20, 20], [6, 40, 20]] grid_thw = split_grid(grid_thw) image_bs = len(grid_thw) // 3 image_type_ids = [0] * image_bs # 随机拼接input_ids: [txt0+img1+tx1+img2] input_ids = [2] * 19 img1 = [100295] * 100 * 3 txt1 = [3] * 19 img2 = [100295] * 200 * 3 input_ids.extend(img1) input_ids.extend(txt1) input_ids.extend(img2) split_fuse_img_size = 16 split_fuse_text_size = 384 # 1024 seq_len = len(input_ids) input_ids_tensor = paddle.to_tensor(input_ids, dtype="int64") image_type_ids_tensor = paddle.to_tensor(image_type_ids, dtype="int32") is_image_token = paddle.where(input_ids_tensor == 100295, 1, 0) image_token_sum = paddle.cumsum(is_image_token) # 前缀和 image_token_sum = paddle.concat([paddle.zeros([1], dtype="int64"), image_token_sum]) grid_thw_tensor = paddle.to_tensor(grid_thw, dtype="int64") image_chunk_selections, split_fuse_cur_seq_lens = get_mm_split_fuse( input_ids_tensor.cpu(), image_type_ids_tensor.cast("int32").cpu(), image_token_sum.cast("int32").cpu(), grid_thw_tensor.cpu(), 100295, image_bs, 0, seq_len, split_fuse_img_size, split_fuse_text_size, 2048, ) print("seq_len: ", seq_len) print("grid_thw", grid_thw_tensor) print("image_chunk_selections: ", image_chunk_selections) print("split_fuse_cur_seq_lens: ", split_fuse_cur_seq_lens)