""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from fastdeploy.utils import get_logger logger = get_logger("prefix_cache_manager", "prefix_cache_manager.log") class CacheMetrics: """ Cache Metrics used to record the cache hit time, token num, request num, etc. """ def __init__(self): self.total_match_time = 0.0 self.avg_match_time = 0.0 self.min_match_time = 1e9 self.max_match_time = 0.0 # request level self.req_count = 0 self.hit_req_count = 0 self.hit_req_ratio = 0.0 # token level self.total_gpu_matched_token_num = 0 self.total_cpu_matched_token_num = 0 self.matched_token_num = 0 self.total_token_num = 0 self.hit_token_ratio = 0.0 self.cpu_hit_token_ratio = 0.0 self.gpu_hit_token_ratio = 0.0 def _update_history_hit_metrics(self): """ update hit ratio """ self.hit_req_ratio = self.hit_req_count / self.req_count self.hit_token_ratio = self.matched_token_num / self.total_token_num self.cpu_hit_token_ratio = self.total_cpu_matched_token_num / self.total_token_num self.gpu_hit_token_ratio = self.total_gpu_matched_token_num / self.total_token_num logger.info( f"Metrics for all requests: req_count {self.req_count} hit_req_count {self.hit_req_count}" + f" hit_req_ratio {self.hit_req_ratio:.2f} hit_token_ratio {self.hit_token_ratio:.2f}" + f" gpu_hit_token_ratio {self.gpu_hit_token_ratio:.2f}" + f" cpu_hit_token_ratio {self.cpu_hit_token_ratio:.2f}" + f" total_gpu_matched_token_num {self.total_gpu_matched_token_num}" + f" total_cpu_matched_token_num {self.total_cpu_matched_token_num}" + f" total_matched_token_num {self.matched_token_num}" + f" total_token_num {self.total_token_num}" ) def calculate_hit_metrics( self, req_id, current_query_cpu_match_token_num, current_query_gpu_match_token_num, current_query_token_num, ): """ calculate hit metrics for current query """ cpu_cache_match_ratio = current_query_cpu_match_token_num / current_query_token_num gpu_cache_match_ratio = current_query_gpu_match_token_num / current_query_token_num total_match_ratio = cpu_cache_match_ratio + gpu_cache_match_ratio self.total_cpu_matched_token_num += current_query_cpu_match_token_num self.total_gpu_matched_token_num += current_query_gpu_match_token_num self.matched_token_num += current_query_cpu_match_token_num + current_query_gpu_match_token_num self.total_token_num += current_query_token_num logger.info( f"Metrics for req_id {req_id}: token_num {current_query_token_num}" + f" cpu_cache_match_ratio {cpu_cache_match_ratio}" + f" gpu_cache_match_ratio {gpu_cache_match_ratio}" + f" total_match_ratio {total_match_ratio}" ) def reset_metrics(self): """ reset metrics """ self.total_match_time = 0.0 self.avg_match_time = 0.0 self.min_match_time = 1e9 self.max_match_time = 0.0 self.req_count = 0 self.hit_req_count = 0 self.hit_req_ratio = 0.0 self.total_gpu_matched_token_num = 0 self.total_cpu_matched_token_num = 0 self.matched_token_num = 0 self.total_token_num = 0 self.hit_token_ratio = 0.0 self.cpu_hit_token_ratio = 0.0 self.gpu_hit_token_ratio = 0.0