// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision.h" #ifdef WIN32 const char sep = '\\'; #else const char sep = '/'; #endif void CpuInfer(const std::string& model_dir, const std::string& video_file) { auto model_file = model_dir + sep + "model.pdmodel"; auto params_file = model_dir + sep + "model.pdiparams"; auto config_file = model_dir + sep + "infer_cfg.yml"; auto model = fastdeploy::vision::tracking::PPTracking( model_file, params_file, config_file); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return; } fastdeploy::vision::MOTResult result; fastdeploy::vision::tracking::TrailRecorder recorder; // during each prediction, data is inserted into the recorder. As the number of predictions increases, // the memory will continue to grow. You can cancel the insertion through 'UnbindRecorder'. // int count = 0; // unbind condition model.BindRecorder(&recorder); cv::Mat frame; cv::VideoCapture capture(video_file); while (capture.read(frame)) { if (frame.empty()) { break; } if (!model.Predict(&frame, &result)) { std::cerr << "Failed to predict." << std::endl; return; } // such as adding this code can cancel trail datat bind // if(count++ == 10) model.UnbindRecorder(); // std::cout << result.Str() << std::endl; cv::Mat out_img = fastdeploy::vision::VisMOT(frame, result, 0.0, &recorder); cv::imshow("mot",out_img); cv::waitKey(30); } model.UnbindRecorder(); capture.release(); cv::destroyAllWindows(); } void GpuInfer(const std::string& model_dir, const std::string& video_file) { auto model_file = model_dir + sep + "model.pdmodel"; auto params_file = model_dir + sep + "model.pdiparams"; auto config_file = model_dir + sep + "infer_cfg.yml"; auto option = fastdeploy::RuntimeOption(); option.UseGpu(); auto model = fastdeploy::vision::tracking::PPTracking( model_file, params_file, config_file, option); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return; } fastdeploy::vision::MOTResult result; fastdeploy::vision::tracking::TrailRecorder trail_recorder; // during each prediction, data is inserted into the recorder. As the number of predictions increases, // the memory will continue to grow. You can cancel the insertion through 'UnbindRecorder'. // int count = 0; // unbind condition model.BindRecorder(&trail_recorder); cv::Mat frame; cv::VideoCapture capture(video_file); while (capture.read(frame)) { if (frame.empty()) { break; } if (!model.Predict(&frame, &result)) { std::cerr << "Failed to predict." << std::endl; return; } // such as adding this code can cancel trail datat bind //if(count++ == 10) model.UnbindRecorder(); // std::cout << result.Str() << std::endl; cv::Mat out_img = fastdeploy::vision::VisMOT(frame, result, 0.0, &trail_recorder); cv::imshow("mot",out_img); cv::waitKey(30); } model.UnbindRecorder(); capture.release(); cv::destroyAllWindows(); } void TrtInfer(const std::string& model_dir, const std::string& video_file) { auto model_file = model_dir + sep + "model.pdmodel"; auto params_file = model_dir + sep + "model.pdiparams"; auto config_file = model_dir + sep + "infer_cfg.yml"; auto option = fastdeploy::RuntimeOption(); option.UseGpu(); option.UseTrtBackend(); auto model = fastdeploy::vision::tracking::PPTracking( model_file, params_file, config_file, option); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return; } fastdeploy::vision::MOTResult result; fastdeploy::vision::tracking::TrailRecorder recorder; //during each prediction, data is inserted into the recorder. As the number of predictions increases, //the memory will continue to grow. You can cancel the insertion through 'UnbindRecorder'. // int count = 0; // unbind condition model.BindRecorder(&recorder); cv::Mat frame; cv::VideoCapture capture(video_file); while (capture.read(frame)) { if (frame.empty()) { break; } if (!model.Predict(&frame, &result)) { std::cerr << "Failed to predict." << std::endl; return; } // such as adding this code can cancel trail datat bind // if(count++ == 10) model.UnbindRecorder(); // std::cout << result.Str() << std::endl; cv::Mat out_img = fastdeploy::vision::VisMOT(frame, result, 0.0, &recorder); cv::imshow("mot",out_img); cv::waitKey(30); } model.UnbindRecorder(); capture.release(); cv::destroyAllWindows(); } int main(int argc, char* argv[]) { if (argc < 4) { std::cout << "Usage: infer_demo path/to/model_dir path/to/video run_option, " "e.g ./infer_model ./pptracking_model_dir ./person.mp4 0" << std::endl; std::cout << "The data type of run_option is int, 0: run with cpu; 1: run " "with gpu; 2: run with gpu and use tensorrt backend." << std::endl; return -1; } if (std::atoi(argv[3]) == 0) { CpuInfer(argv[1], argv[2]); } else if (std::atoi(argv[3]) == 1) { GpuInfer(argv[1], argv[2]); } else if (std::atoi(argv[3]) == 2) { TrtInfer(argv[1], argv[2]); } return 0; }