// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "flags.h" #include "macros.h" #include "option.h" int main(int argc, char* argv[]) { #if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION) // Initialization auto option = fastdeploy::RuntimeOption(); if (!CreateRuntimeOption(&option, argc, argv, true)) { return -1; } auto im = cv::imread(FLAGS_image); // Classification Model auto cls_model_file = FLAGS_model + sep + "inference.pdmodel"; auto cls_params_file = FLAGS_model + sep + "inference.pdiparams"; if (FLAGS_backend == "paddle_trt") { option.paddle_infer_option.collect_trt_shape = true; } if (FLAGS_backend == "paddle_trt" || FLAGS_backend == "trt") { option.trt_option.SetShape("x", {1, 3, 48, 10}, {4, 3, 48, 320}, {8, 3, 48, 1024}); } auto model_ppocr_cls = fastdeploy::vision::ocr::Classifier( cls_model_file, cls_params_file, option); int32_t res_label; float res_score; // Run once at least model_ppocr_cls.Predict(im, &res_label, &res_score); // 1. Test result diff std::cout << "=============== Test result diff =================\n"; int32_t res_label_expect = 0; float res_score_expect = 1.0; // Calculate diff between two results. auto ppocr_cls_label_diff = res_label - res_label_expect; auto ppocr_cls_score_diff = res_score - res_score_expect; std::cout << "PPOCR Cls label diff: " << ppocr_cls_label_diff << std::endl; std::cout << "PPOCR Cls score diff: " << abs(ppocr_cls_score_diff) << std::endl; BENCHMARK_MODEL(model_ppocr_cls, model_ppocr_cls.Predict(im, &res_label, &res_score)); #endif return 0; }