// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/fastdeploy_model.h" #include "fastdeploy/vision/common/processors/transform.h" #include "fastdeploy/vision/common/result.h" // The namespace shoulde be // fastdeploy::vision::classification (fastdeploy::vision::${task}) namespace fastdeploy { namespace vision { /** \brief All object classification model APIs are defined inside this namespace * */ namespace classification { /*! @brief Torchvision ResNet series model */ class FASTDEPLOY_DECL ResNet : public FastDeployModel { public: /** \brief Set path of model file and the configuration of runtime. * * \param[in] model_file Path of model file, e.g ./resnet50.onnx * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored * \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends" * \param[in] model_format Model format of the loaded model, default is ONNX format */ ResNet(const std::string& model_file, const std::string& params_file = "", const RuntimeOption& custom_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::ONNX); virtual std::string ModelName() const { return "ResNet"; } /** \brief Predict for the input "im", the result will be saved in "result". * * \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result Saving the inference result. * \param[in] topk The length of return values, e.g., if topk==2, the result will include the 2 most possible class label for input image. */ virtual bool Predict(cv::Mat* im, ClassifyResult* result, int topk = 1); /*! @brief Argument for image preprocessing step, tuple of (width, height), decide the target size after resize */ std::vector size; /// Mean parameters for normalize, size should be the the same as channels std::vector mean_vals; /// Std parameters for normalize, size should be the the same as channels std::vector std_vals; private: /*! @brief Initialize for ResNet model, assign values to the global variables and call InitRuntime() */ bool Initialize(); /// PreProcessing for the input "mat", the result will be saved in "outputs". bool Preprocess(Mat* mat, FDTensor* outputs); /*! @brief PostProcessing for the input "infer_result", the result will be saved in "result". */ bool Postprocess(FDTensor& infer_result, ClassifyResult* result, int topk = 1); }; } // namespace classification } // namespace vision } // namespace fastdeploy