# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import re import shutil import signal import socket import subprocess import sys import time import openai import pytest import requests # Read ports from environment variables; use default values if not set FD_API_PORT = int(os.getenv("FD_API_PORT", 8188)) FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133)) FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8233)) # List of ports to clean before and after tests PORTS_TO_CLEAN = [FD_API_PORT, FD_ENGINE_QUEUE_PORT, FD_METRICS_PORT] def is_port_open(host: str, port: int, timeout=1.0): """ Check if a TCP port is open on the given host. Returns True if connection succeeds, False otherwise. """ try: with socket.create_connection((host, port), timeout): return True except Exception: return False def kill_process_on_port(port: int): """ Kill processes that are listening on the given port. Uses `lsof` to find process ids and sends SIGKILL. """ try: output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip() current_pid = os.getpid() parent_pid = os.getppid() for pid in output.splitlines(): pid = int(pid) if pid in (current_pid, parent_pid): print(f"Skip killing current process (pid={pid}) on port {port}") continue os.kill(pid, signal.SIGKILL) print(f"Killed process on port {port}, pid={pid}") except subprocess.CalledProcessError: pass def clean_ports(): """ Kill all processes occupying the ports listed in PORTS_TO_CLEAN. """ for port in PORTS_TO_CLEAN: kill_process_on_port(port) time.sleep(2) @pytest.fixture(scope="session", autouse=True) def setup_and_run_server(): """ Pytest fixture that runs once per test session: - Cleans ports before tests - Starts the API server as a subprocess - Waits for server port to open (up to 30 seconds) - Tears down server after all tests finish """ print("Pre-test port cleanup...") clean_ports() print("log dir clean ") if os.path.exists("log") and os.path.isdir("log"): shutil.rmtree("log") base_path = os.getenv("MODEL_PATH") if base_path: model_path = os.path.join(base_path, "ernie-4_5-vl-28b-a3b-bf16-paddle") else: model_path = "./ernie-4_5-vl-28b-a3b-bf16-paddle" log_path = "server.log" limit_mm_str = json.dumps({"image": 100, "video": 100}) cmd = [ sys.executable, "-m", "fastdeploy.entrypoints.openai.api_server", "--model", model_path, "--port", str(FD_API_PORT), "--tensor-parallel-size", "2", "--engine-worker-queue-port", str(FD_ENGINE_QUEUE_PORT), "--metrics-port", str(FD_METRICS_PORT), "--enable-mm", "--max-model-len", "32768", "--max-num-batched-tokens", "384", "--max-num-seqs", "128", "--limit-mm-per-prompt", limit_mm_str, "--enable-chunked-prefill", "--kv-cache-ratio", "0.71", "--quantization", "wint4", "--reasoning-parser", "ernie-45-vl", ] # Start subprocess in new process group with open(log_path, "w") as logfile: process = subprocess.Popen( cmd, stdout=logfile, stderr=subprocess.STDOUT, start_new_session=True, # Enables killing full group via os.killpg ) # Wait up to 10 minutes for API server to be ready for _ in range(10 * 60): if is_port_open("127.0.0.1", FD_API_PORT): print(f"API server is up on port {FD_API_PORT}") break time.sleep(1) else: print("[TIMEOUT] API server failed to start in 5 minutes. Cleaning up...") try: os.killpg(process.pid, signal.SIGTERM) except Exception as e: print(f"Failed to kill process group: {e}") raise RuntimeError(f"API server did not start on port {FD_API_PORT}") yield # Run tests print("\n===== Post-test server cleanup... =====") try: os.killpg(process.pid, signal.SIGTERM) print(f"API server (pid={process.pid}) terminated") clean_ports() except Exception as e: print(f"Failed to terminate API server: {e}") @pytest.fixture(scope="session") def api_url(request): """ Returns the API endpoint URL for chat completions. """ return f"http://0.0.0.0:{FD_API_PORT}/v1/chat/completions" @pytest.fixture(scope="session") def metrics_url(request): """ Returns the metrics endpoint URL. """ return f"http://0.0.0.0:{FD_METRICS_PORT}/metrics" @pytest.fixture def headers(): """ Returns common HTTP request headers. """ return {"Content-Type": "application/json"} @pytest.fixture def consistent_payload(): """ Returns a fixed payload for consistency testing, including a fixed random seed and temperature. """ return { "messages": [ { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": "https://ku.baidu-int.com/vk-assets-ltd/space/2024/09/13/933d1e0a0760498e94ec0f2ccee865e0", "detail": "high", }, }, {"type": "text", "text": "请描述图片内容"}, ], } ], "temperature": 0.8, "top_p": 0, # fix top_p to reduce randomness "seed": 13, # fixed random seed } # ========================== # Consistency test for repeated runs with fixed payload # ========================== def test_consistency_between_runs(api_url, headers, consistent_payload): """ Test that result is same as the base result. """ # request resp1 = requests.post(api_url, headers=headers, json=consistent_payload) assert resp1.status_code == 200 result1 = resp1.json() content1 = ( result1["choices"][0]["message"]["reasoning_content"] + "" + result1["choices"][0]["message"]["content"] ) file_res_temp = "ernie-4_5-vl" f_o = open(file_res_temp, "a") f_o.writelines(content1) f_o.close() # base result base_path = os.getenv("MODEL_PATH") if base_path: base_file = os.path.join(base_path, "ernie-4_5-vl-base-tp2") else: base_file = "ernie-4_5-vl-base-tp2" with open(base_file, "r") as f: content2 = f.read() # Verify that result is same as the base result assert content1 == content2 # ========================== # OpenAI Client Chat Completion Test # ========================== @pytest.fixture def openai_client(): ip = "0.0.0.0" service_http_port = str(FD_API_PORT) client = openai.Client( base_url=f"http://{ip}:{service_http_port}/v1", api_key="EMPTY_API_KEY", ) return client # Non-streaming test def test_non_streaming_chat(openai_client): """Test non-streaming chat functionality with the local service""" response = openai_client.chat.completions.create( model="default", messages=[ { "role": "system", "content": "You are a helpful AI assistant.", }, # system不是必需,可选 { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": "https://ku.baidu-int.com/vk-assets-ltd/space/2024/09/13/933d1e0a0760498e94ec0f2ccee865e0", "detail": "high", }, }, {"type": "text", "text": "请描述图片内容"}, ], }, ], temperature=1, max_tokens=53, stream=False, ) assert hasattr(response, "choices") assert len(response.choices) > 0 assert hasattr(response.choices[0], "message") assert hasattr(response.choices[0].message, "content") # Streaming test def test_streaming_chat(openai_client, capsys): """Test streaming chat functionality with the local service""" response = openai_client.chat.completions.create( model="default", messages=[ { "role": "system", "content": "You are a helpful AI assistant.", }, # system不是必需,可选 {"role": "user", "content": "List 3 countries and their capitals."}, { "role": "assistant", "content": "China(Beijing), France(Paris), Australia(Canberra).", }, { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": "https://ku.baidu-int.com/vk-assets-ltd/space/2024/09/13/933d1e0a0760498e94ec0f2ccee865e0", "detail": "high", }, }, {"type": "text", "text": "请描述图片内容"}, ], }, ], temperature=1, max_tokens=512, stream=True, ) output = [] for chunk in response: if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"): output.append(chunk.choices[0].delta.content) assert len(output) > 2 # ========================== # OpenAI Client additional chat/completions test # ========================== def test_non_streaming_chat_with_return_token_ids(openai_client, capsys): """ Test return_token_ids option in non-streaming chat functionality with the local service """ # 设定 return_token_ids response = openai_client.chat.completions.create( model="default", messages=[ {"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需,可选 { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg", "detail": "high", }, }, {"type": "text", "text": "请描述图片内容"}, ], }, ], temperature=1, max_tokens=53, extra_body={"return_token_ids": True}, stream=False, ) assert hasattr(response, "choices") assert len(response.choices) > 0 assert hasattr(response.choices[0], "message") assert hasattr(response.choices[0].message, "prompt_token_ids") assert isinstance(response.choices[0].message.prompt_token_ids, list) assert hasattr(response.choices[0].message, "completion_token_ids") assert isinstance(response.choices[0].message.completion_token_ids, list) # 不设定 return_token_ids response = openai_client.chat.completions.create( model="default", messages=[ {"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需,可选 { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg", "detail": "high", }, }, {"type": "text", "text": "请描述图片内容"}, ], }, ], temperature=1, max_tokens=53, extra_body={"return_token_ids": False}, stream=False, ) assert hasattr(response, "choices") assert len(response.choices) > 0 assert hasattr(response.choices[0], "message") assert hasattr(response.choices[0].message, "prompt_token_ids") assert response.choices[0].message.prompt_token_ids is None assert hasattr(response.choices[0].message, "completion_token_ids") assert response.choices[0].message.completion_token_ids is None def test_streaming_chat_with_return_token_ids(openai_client, capsys): """ Test return_token_ids option in streaming chat functionality with the local service """ # enable return_token_ids response = openai_client.chat.completions.create( model="default", messages=[ {"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需,可选 { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg", "detail": "high", }, }, {"type": "text", "text": "请描述图片内容"}, ], }, ], temperature=1, max_tokens=53, extra_body={"return_token_ids": True}, stream=True, ) is_first_chunk = True for chunk in response: assert hasattr(chunk, "choices") assert len(chunk.choices) > 0 assert hasattr(chunk.choices[0], "delta") assert hasattr(chunk.choices[0].delta, "prompt_token_ids") assert hasattr(chunk.choices[0].delta, "completion_token_ids") if is_first_chunk: is_first_chunk = False assert isinstance(chunk.choices[0].delta.prompt_token_ids, list) assert chunk.choices[0].delta.completion_token_ids is None else: assert chunk.choices[0].delta.prompt_token_ids is None assert isinstance(chunk.choices[0].delta.completion_token_ids, list) # disable return_token_ids response = openai_client.chat.completions.create( model="default", messages=[ {"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需,可选 { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg", "detail": "high", }, }, {"type": "text", "text": "请描述图片内容"}, ], }, ], temperature=1, max_tokens=53, extra_body={"return_token_ids": False}, stream=True, ) for chunk in response: assert hasattr(chunk, "choices") assert len(chunk.choices) > 0 assert hasattr(chunk.choices[0], "delta") assert hasattr(chunk.choices[0].delta, "prompt_token_ids") assert chunk.choices[0].delta.prompt_token_ids is None assert hasattr(chunk.choices[0].delta, "completion_token_ids") assert chunk.choices[0].delta.completion_token_ids is None def test_chat_with_thinking(openai_client, capsys): """ Test enable_thinking & reasoning_max_tokens option in non-streaming chat functionality with the local service """ # enable thinking, non-streaming response = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Explain gravity in a way that a five-year-old child can understand."}], temperature=1, stream=False, max_tokens=10, extra_body={"chat_template_kwargs": {"enable_thinking": True}}, ) assert response.choices[0].message.reasoning_content is not None # disable thinking, non-streaming response = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Explain gravity in a way that a five-year-old child can understand."}], temperature=1, stream=False, max_tokens=10, extra_body={"chat_template_kwargs": {"enable_thinking": False}}, ) assert response.choices[0].message.reasoning_content is None assert "" not in response.choices[0].message.content # enable thinking, streaming reasoning_max_tokens = 3 response = openai_client.chat.completions.create( model="default", messages=[{"role": "user", "content": "Explain gravity in a way that a five-year-old child can understand."}], temperature=1, extra_body={ "chat_template_kwargs": {"enable_thinking": True}, "reasoning_max_tokens": reasoning_max_tokens, "return_token_ids": True, }, stream=True, max_tokens=10, ) completion_tokens = 1 reasoning_tokens = 0 total_tokens = 0 for chunk_id, chunk in enumerate(response): if chunk_id == 0: # the first chunk is an extra chunk continue delta_message = chunk.choices[0].delta if delta_message.content != "" and delta_message.reasoning_content == "": completion_tokens += len(delta_message.completion_token_ids) elif delta_message.reasoning_content != "" and delta_message.content == "": reasoning_tokens += len(delta_message.completion_token_ids) total_tokens += len(delta_message.completion_token_ids) assert completion_tokens + reasoning_tokens == total_tokens assert reasoning_tokens <= reasoning_max_tokens def test_profile_reset_block_num(): """测试profile reset_block_num功能,与baseline diff不能超过5%""" log_file = "./log/config.log" baseline = 40000 if not os.path.exists(log_file): pytest.fail(f"Log file not found: {log_file}") with open(log_file, "r") as f: log_lines = f.readlines() target_line = None for line in log_lines: if "Reset block num" in line: target_line = line.strip() break if target_line is None: pytest.fail("日志中没有Reset block num信息") match = re.search(r"total_block_num:(\d+)", target_line) if not match: pytest.fail(f"Failed to extract total_block_num from line: {target_line}") try: actual_value = int(match.group(1)) except ValueError: pytest.fail(f"Invalid number format: {match.group(1)}") lower_bound = baseline * (1 - 0.05) upper_bound = baseline * (1 + 0.05) print(f"Reset total_block_num: {actual_value}. baseline: {baseline}") assert lower_bound <= actual_value <= upper_bound, ( f"Reset total_block_num {actual_value} 与 baseline {baseline} diff需要在5%以内" f"Allowed range: [{lower_bound:.1f}, {upper_bound:.1f}]" )