""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import os import numpy as np from paddleformers.generation import GenerationConfig from fastdeploy.input.ernie4_5_tokenizer import Ernie4_5Tokenizer from fastdeploy.input.text_processor import BaseDataProcessor from fastdeploy.utils import data_processor_logger _SAMPLING_EPS = 1e-5 class Ernie4_5Processor(BaseDataProcessor): """ 初始化模型实例。 Args: model_name_or_path (str): 模型名称或路径。 Attributes: model_name_or_path (str): 存储模型名称或路径。 decode_status (dict): 存储解码状态信息。 tokenizer (object): 存储分词器实例。 eos_token_ids (list): 存储结束符号的token ID列表。 eos_token_id_len (int): 存储结束符号的token ID列表的长度。 pad_token_id (int): 存储填充符号的token ID。 """ def __init__(self, model_name_or_path, reasoning_parser_obj=None, tool_parser_obj=None): self.model_name_or_path = model_name_or_path data_processor_logger.info(f"model_name_or_path: {model_name_or_path}") # Generation config try: self.generation_config = GenerationConfig.from_pretrained(self.model_name_or_path) except Exception as e: data_processor_logger.warning( f"Can't find generation config, so it will not use " f"generation_config field in the model config, details={e}" ) self.generation_config = None self.decode_status = dict() self.tool_parser_dict = dict() self.thinking_parser_dict = dict() self._load_tokenizer() data_processor_logger.info( f"tokenizer information: bos_token is {self.tokenizer.bos_token} \ {self.tokenizer.bos_token_id}, \ eos_token is {self.tokenizer.eos_token}, {self.tokenizer.eos_token_id} " ) from paddleformers.trl.llm_utils import get_eos_token_id self.eos_token_ids = get_eos_token_id(self.tokenizer, self.generation_config) self.eos_token_id_len = len(self.eos_token_ids) self.pad_token_id = self.get_pad_id() self.reasoning_parser = None self.tool_parser_obj = tool_parser_obj if reasoning_parser_obj: self.reasoning_parser = reasoning_parser_obj(self.tokenizer) def process_request(self, request, max_model_len=None, **kwargs): """ Preprocess the request Args: request (Dict): may contain text and messages fields Returns: bool: Whether preprocessing is successful str: error message """ data_processor_logger.info(f"Start processing request: {request}") request = self._apply_default_parameters(request) if request.get("eos_token_ids") is None or len(request.eos_token_ids) == 0: request.eos_token_ids = self.eos_token_ids # processing stop_sequences stop_sequences = request.get("stop", []) if stop_sequences is not None and len(stop_sequences) != 0: stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences) request.set("stop_token_ids", stop_seqs) request.set("stop_seqs_len", stop_seqs_len) # processing bad_words bad_words = request.get("bad_words") bad_words_token_ids = request.get("bad_words_token_ids") if bad_words: bad_words_token_ids = self.update_bad_words(bad_words, bad_words_token_ids) request["bad_words_token_ids"] = bad_words_token_ids # processing prompt_token_ids if request.prompt_token_ids is None or len(request.prompt_token_ids) == 0: if request.prompt is not None: # prompt = request.prompt if request.prompt is not None else request.messages[0] prompt = request.prompt assert isinstance(prompt, str) or ( isinstance(prompt, list) and all([isinstance(t, int) for t in prompt]) ), f"prompt must be a string or a list of integers, but got {type(prompt)}" if isinstance(prompt, list): # if prompt is a token id list request.prompt_token_ids = prompt else: tokens = self.tokenizer.tokenize(prompt) token_ids = self.tokenizer.convert_tokens_to_ids(tokens) request.prompt_token_ids = token_ids data_processor_logger.debug( f"request_ids: {request.request_id}, prompt: {prompt}, tokens: {tokens}, token_ids: {token_ids}" ) elif request.messages is not None: task = request.to_dict() chat_template_kwargs = kwargs.get("chat_template_kwargs", {}) if chat_template_kwargs: if isinstance(chat_template_kwargs, dict): for k, v in chat_template_kwargs.items(): if k not in task: task[k] = v else: raise ValueError("Invalid input: chat_template_kwargs must be a dict") request.prompt_token_ids = self.messages2ids(task, **chat_template_kwargs) else: raise ValueError(f"The request should have `prompt_token_ids`, `prompt` or `messages`: {request}.") if len(request.prompt_token_ids) == 0: raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs") # truncate prompts that exceed the length limit if max_model_len is not None and len(request.prompt_token_ids) > max_model_len: request.prompt_token_ids = request.prompt_token_ids[: max_model_len - 1] if request.get("max_tokens") is None: request.set("max_tokens", max(1, max_model_len - len(request.prompt_token_ids))) if request.get("temperature") < _SAMPLING_EPS: # zero temperature is equivalent to greedy sampling request.set("temperature", 1) if request.get("top_p") < _SAMPLING_EPS: request.set("top_p", _SAMPLING_EPS) if self.reasoning_parser and self.reasoning_parser.__class__.__name__ == "ErnieX1ReasoningParser": request.enable_thinking = True data_processor_logger.info(f"Processed request: {request}") return request def process_request_dict(self, request, max_model_len=None): """ Preprocess the request Args: request (Dict): may contain text and messages fields Returns: bool: Whether preprocessing is successful str: error message """ data_processor_logger.info(f"Start processing request dict: {request}") request = self._apply_default_parameters(request) if not request.get("eos_token_ids"): request["eos_token_ids"] = self.eos_token_ids # processing stop_sequences stop_sequences = request.get("stop", []) if stop_sequences: stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences) request["stop_token_ids"] = stop_seqs request["stop_seqs_len"] = stop_seqs_len # processing bad_words bad_words = request.get("bad_words") bad_words_token_ids = request.get("bad_words_token_ids") if bad_words: bad_words_token_ids = self.update_bad_words(bad_words, bad_words_token_ids) request["bad_words_token_ids"] = bad_words_token_ids # processing prompt_token_ids if not request.get("prompt_token_ids"): if request.get("prompt"): prompt = request.get("prompt") assert isinstance(prompt, str) or ( isinstance(prompt, list) and all([isinstance(t, int) for t in prompt]) ), f"prompt must be a string or a list of integers, but got {type(prompt)}" if isinstance(prompt, list): # if prompt is a token id list request["prompt_token_ids"] = prompt else: request["text_after_process"] = prompt tokens = self.tokenizer.tokenize(prompt) token_ids = self.tokenizer.convert_tokens_to_ids(tokens) request["prompt_token_ids"] = token_ids req_id = request.get("request_id", None) data_processor_logger.info(f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}") elif request.get("messages"): chat_template_kwargs = request.get("chat_template_kwargs", {}) if chat_template_kwargs: if isinstance(chat_template_kwargs, dict): for k, v in chat_template_kwargs.items(): if k not in request: request[k] = v else: raise ValueError("Invalid input: chat_template_kwargs must be a dict") request["prompt_token_ids"] = self.messages2ids(request, **chat_template_kwargs) else: raise ValueError(f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}") if len(request["prompt_token_ids"]) == 0: raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs") # truncate prompts that exceed the length limit if max_model_len is not None and len(request["prompt_token_ids"]) > max_model_len: request["prompt_token_ids"] = request["prompt_token_ids"][: max_model_len - 1] if request.get("max_tokens") is None: request["max_tokens"] = max(1, max_model_len - len(request["prompt_token_ids"])) if request.get("temperature") < _SAMPLING_EPS: # zero temperature is equivalent to greedy sampling request["temperature"] = 1 if request.get("top_p") < _SAMPLING_EPS: request["top_p"] = _SAMPLING_EPS if self.reasoning_parser and self.reasoning_parser.__class__.__name__ == "ErnieX1ReasoningParser": request["enable_thinking"] = True data_processor_logger.info(f"Processed request dict: {request}") return request def process_response(self, response_dict, **kwargs): """ Preprocess the response Args: response_dict (Dict): response for engine, contain ids fields Returns: Dict: response contain text fields """ req_id = response_dict.request_id token_ids = response_dict.outputs.token_ids response_dict.usage = {"completion_tokens": response_dict.outputs.index + 1} if token_ids[-1] == self.tokenizer.eos_token_id: token_ids = token_ids[:-1] full_text = self.tokenizer.decode(token_ids) if self.reasoning_parser: reasoning_content, text = self.reasoning_parser.extract_reasoning_content(full_text, response_dict) response_dict.outputs.text = text response_dict.outputs.reasoning_content = reasoning_content else: response_dict.outputs.text = full_text if self.tool_parser_obj: tool_parser = self.tool_parser_obj(self.tokenizer) tool_call_info = tool_parser.extract_tool_calls(full_text, response_dict) if tool_call_info.tools_called: response_dict.outputs.tool_calls = tool_call_info.tool_calls response_dict.outputs.text = tool_call_info.content data_processor_logger.info(f"req_id:{req_id}, token_ids: {token_ids}") if response_dict.outputs.text == "" and response_dict.outputs.reasoning_content == "": return None return response_dict def process_response_dict(self, response_dict, stream, **kwargs): """ Preprocess the response Args: response_dict (Dict): response for engine, contain ids fields Returns: Dict: response contain text fields """ if stream: return self.process_response_dict_streaming(response_dict, **kwargs) else: return self.process_response_dict_normal(response_dict, **kwargs) def process_response_dict_normal(self, response_dict, **kwargs): """ Preprocess the response Args: response_dict (Dict): response for engine, contain ids fields Returns: Dict: response contain text fields """ enable_thinking = kwargs.get("enable_thinking") token_ids = response_dict["outputs"]["token_ids"] is_end = response_dict["finished"] req_id = response_dict["request_id"] if is_end and len(token_ids) > 0 and not kwargs.get("include_stop_str_in_output"): if token_ids[-1] == self.tokenizer.eos_token_id: token_ids = token_ids[:-1] delta_text, _, previous_texts = self.ids2tokens(token_ids, req_id) if is_end: full_text = previous_texts + delta_text if self.reasoning_parser and ( enable_thinking or self.reasoning_parser.__class__.__name__ == "ErnieX1ReasoningParser" ): reasoning_content, text = self.reasoning_parser.extract_reasoning_content(full_text, response_dict) response_dict["outputs"]["text"] = text response_dict["outputs"]["reasoning_content"] = reasoning_content else: response_dict["outputs"]["text"] = full_text if self.tool_parser_obj: tool_parser = self.tool_parser_obj(self.tokenizer) tool_call_info = tool_parser.extract_tool_calls(full_text, response_dict) if tool_call_info.tools_called: response_dict["outputs"]["tool_call"] = tool_call_info.tool_calls response_dict["outputs"]["text"] = tool_call_info.content response_dict["outputs"]["raw_prediction"] = full_text data_processor_logger.info(f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}") del self.decode_status[req_id] return response_dict def process_response_dict_streaming(self, response_dict, **kwargs): """ Preprocess the response streaming Args: response_dict (Dict): response for engine, contain ids fields Returns: Dict: response contain text fields """ enable_thinking = kwargs.get("enable_thinking") is_end = response_dict["finished"] req_id = response_dict["request_id"] token_ids = response_dict["outputs"]["token_ids"] if is_end and len(token_ids) > 0 and not kwargs.get("include_stop_str_in_output"): if token_ids[-1] == self.tokenizer.eos_token_id: token_ids = token_ids[:-1] delta_text, previous_token_ids, previous_texts = self.ids2tokens(token_ids, req_id) response_dict["outputs"]["raw_prediction"] = delta_text if self.reasoning_parser and ( enable_thinking or self.reasoning_parser.__class__.__name__ == "ErnieX1ReasoningParser" ): reasoning_delta_message = self.reasoning_parser.extract_reasoning_content_streaming( previous_texts, previous_texts + delta_text, delta_text, previous_token_ids, previous_token_ids + token_ids, token_ids, ) response_dict["outputs"]["delta_message"] = reasoning_delta_message if self.tool_parser_obj: if req_id not in self.tool_parser_dict: self.tool_parser_dict[req_id] = self.tool_parser_obj(self.tokenizer) tool_parser = self.tool_parser_dict[req_id] tool_call_delta_message = tool_parser.extract_tool_calls_streaming( previous_texts, previous_texts + delta_text, delta_text, previous_token_ids, previous_token_ids + token_ids, token_ids, response_dict, ) if tool_call_delta_message is None or tool_call_delta_message.tool_calls: response_dict["outputs"]["delta_message"] = tool_call_delta_message response_dict["outputs"]["text"] = delta_text if is_end: data_processor_logger.info(f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}") del self.decode_status[req_id] if req_id in self.tool_parser_dict: del self.tool_parser_dict[req_id] return response_dict def messages2ids(self, request_or_messages, **kwargs): """ Convert multi-turn messages into ID sequences. Args: request_or_messages: Either a request dict containing 'messages' field, or a list of message dicts directly Returns: List of token IDs as strings (converted from token objects) """ if self.tokenizer.chat_template is None: raise ValueError("This model does not support chat_template.") spliced_message = self.tokenizer.apply_chat_template( request_or_messages, tokenize=False, split_special_tokens=False, add_special_tokens=False, **kwargs, ) request_or_messages["text_after_process"] = spliced_message req_id = None if isinstance(request_or_messages, dict): req_id = request_or_messages.get("request_id", None) tokens = self.tokenizer.tokenize(spliced_message) token_ids = self.tokenizer.convert_tokens_to_ids(tokens) data_processor_logger.info(f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}") return token_ids def ids2tokens(self, token_id, task_id): """ token ids to strings Args: token_ids (List[int]): token ids task_id (str): task id Returns: List[str]: strings """ if task_id not in self.decode_status: # prefix offset & read offset & history token ids & history token strings self.decode_status[task_id] = [0, 0, [], ""] prefix_offset = self.decode_status[task_id][0] read_offset = self.decode_status[task_id][1] previous_token_ids = self.decode_status[task_id][2] previous_texts = self.decode_status[task_id][3] decode_str, prefix_offset, read_offset = self.tokenizer.decode_token( previous_token_ids + token_id, prefix_offset, read_offset ) self.decode_status[task_id][0] = prefix_offset self.decode_status[task_id][1] = read_offset self.decode_status[task_id][2] += token_id self.decode_status[task_id][3] += decode_str return decode_str, previous_token_ids, previous_texts def _load_tokenizer(self): """ load tokenizer Returns: tokenizer (AutoTokenizer) """ vocab_file_names = [ "tokenizer.model", "spm.model", "ernie_token_100k.model", ] for i in range(len(vocab_file_names)): if os.path.exists(os.path.join(self.model_name_or_path, vocab_file_names[i])): Ernie4_5Tokenizer.resource_files_names["vocab_file"] = vocab_file_names[i] break self.tokenizer = Ernie4_5Tokenizer.from_pretrained(self.model_name_or_path) def get_pad_id(self): """ get pad_token_id, if not pad_token_id, use eos_token Returns: int: pad_token_id """ # if isinstance(self.tokenizer, (LlamaTokenizer, Llama3Tokenizer)) and not self.tokenizer.pad_token_id: # return self.tokenizer.eos_token return self.tokenizer.pad_token_id def pad_batch_data( self, insts, pad_id=0, return_seq_len=False, return_array=True, pad_style="right", ): """Pad the instances to the max sequence length in batch.""" if len(insts) == 0: padded_insts = np.array([[]], dtype=np.int64) if return_array else [[]] if return_seq_len: seq_len = np.array([], dtype=np.int64) if return_array else [] return padded_insts, seq_len return padded_insts max_len = max(map(len, insts)) if pad_style == "left": padded_insts = [[pad_id] * (max_len - len(inst)) + list(inst) for inst in insts] else: padded_insts = [list(inst) + [pad_id] * (max_len - len(inst)) for inst in insts] if return_array: padded_insts = np.array(padded_insts, dtype=np.int64).reshape([-1, max_len]) if return_seq_len: seq_len = [len(inst) for inst in insts] if return_array: seq_len = np.array(seq_len, dtype=np.int64).reshape(-1, 1) return padded_insts, seq_len return padded_insts def update_stop_seq(self, stop_sequences): """ Update stop sequences from request. """ stop_seqs = [] if isinstance(stop_sequences, str): stop_sequences = [stop_sequences] for seq in stop_sequences: if seq != self.tokenizer.eos_token_id: stop_seqs.append(self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(seq))) stop_seqs, stop_seqs_len = self.pad_batch_data(stop_seqs, pad_id=-1, return_seq_len=True, return_array=False) data_processor_logger.debug(f"processed stop_seqs: {stop_seqs}, {stop_seqs_len}") return stop_seqs, stop_seqs_len def process_logprob_response(self, token_ids, **kwargs): full_text = self.tokenizer.decode(token_ids, **kwargs) return full_text def update_bad_words(self, bad_words, bad_words_token_ids): """Support bad words""" token_ids = bad_words_token_ids if token_ids is None: token_ids = [] for bad_word in bad_words: # To prohibit words both at the beginning # and in the middle of text # (related to add_prefix_space tokenizer parameter) for add_prefix_space in [False, True]: prefix = " " if add_prefix_space else "" prompt = prefix + bad_word.lstrip() prompt_token_ids = self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(prompt)) data_processor_logger.debug(f"processed bad_words: {prompt}, {prompt_token_ids}") if len(prompt_token_ids) != 1: if not add_prefix_space: data_processor_logger.warning( f"Skip bad_words: <{prompt}>." f"Bad words should be a single token." f"Got tokens: {prompt_token_ids}." ) continue if prompt_token_ids[0] > self.tokenizer.vocab_size: if not add_prefix_space: data_processor_logger.warning( f"Skip bad_words: <{prompt}>." f"All token id values should be satisfying:" f" 0 <= token_id < {self.tokenizer.vocab_size}." f"Got token: {prompt_token_ids}." ) continue if prompt_token_ids not in token_ids: token_ids.extend(prompt_token_ids) return token_ids