// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "fastdeploy/vision.h" void ONNXInfer(const std::string& model_dir, const std::string& image_file) { std::string model_file = model_dir + "/Portrait_PP_HumanSegV2_Lite_256x144_infer.onnx"; std::string params_file; std::string config_file = model_dir + "/deploy.yaml"; auto option = fastdeploy::RuntimeOption(); option.UseCpu(); auto format = fastdeploy::ModelFormat::ONNX; auto model = fastdeploy::vision::segmentation::PaddleSegModel( model_file, params_file, config_file, option, format); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return; } fastdeploy::TimeCounter tc; tc.Start(); auto im = cv::imread(image_file); fastdeploy::vision::SegmentationResult res; if (!model.Predict(im, &res)) { std::cerr << "Failed to predict." << std::endl; return; } auto vis_im = fastdeploy::vision::VisSegmentation(im, res); tc.End(); tc.PrintInfo("PPSeg in ONNX"); cv::imwrite("infer_onnx.jpg", vis_im); std::cout << "Visualized result saved in ./infer_onnx.jpg" << std::endl; } void RKNPU2Infer(const std::string& model_dir, const std::string& image_file) { std::string model_file = model_dir + "/Portrait_PP_HumanSegV2_Lite_256x144_infer_rk3588.rknn"; std::string params_file; std::string config_file = model_dir + "/deploy.yaml"; auto option = fastdeploy::RuntimeOption(); option.UseRKNPU2(); auto format = fastdeploy::ModelFormat::RKNN; auto model = fastdeploy::vision::segmentation::PaddleSegModel( model_file, params_file, config_file, option, format); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return; } model.GetPreprocessor().DisableNormalizeAndPermute(); fastdeploy::TimeCounter tc; tc.Start(); auto im = cv::imread(image_file); fastdeploy::vision::SegmentationResult res; if (!model.Predict(im, &res)) { std::cerr << "Failed to predict." << std::endl; return; } auto vis_im = fastdeploy::vision::VisSegmentation(im, res); tc.End(); tc.PrintInfo("PPSeg in RKNPU2"); cv::imwrite("infer_rknn.jpg", vis_im); std::cout << "Visualized result saved in ./infer_rknn.jpg" << std::endl; } int main(int argc, char* argv[]) { if (argc < 3) { std::cout << "Usage: infer_demo path/to/model_dir path/to/image run_option, " "e.g ./infer_model ./picodet_model_dir ./test.jpeg" << std::endl; return -1; } RKNPU2Infer(argv[1], argv[2]); ONNXInfer(argv[1], argv[2]); return 0; }