[English](../../../en/quick_start/models/python.md) | 中文 # PPYOLOE Python部署 确认开发环境已安装FastDeploy,参考[FastDeploy安装](../../build_and_install/)安装预编译的FastDeploy,或根据自己需求进行编译安装。 本文档以PaddleDetection目标检测模型PPYOLOE为例展示CPU上的推理示例 ## 1. 获取模型和测试图像 ``` python import fastdeploy as fd model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz" image_url = "https://bj.bcebos.com/fastdeploy/tests/test_det.jpg" fd.download_and_decompress(model_url, path=".") fd.download(image_url, path=".") ``` ## 2. 加载模型 - 更多模型的示例可参考[FastDeploy/examples](https://github.com/PaddlePaddle/FastDeploy/tree/develop/examples) ``` python model_file = "ppyoloe_crn_l_300e_coco/model.pdmodel" params_file = "ppyoloe_crn_l_300e_coco/model.pdiparams" infer_cfg_file = "ppyoloe_crn_l_300e_coco/infer_cfg.yml" # 模型推理的配置信息 option = fd.RuntimeOption() model = fd.vision.detection.PPYOLOE(model_file, params_file, infer_cfg_file, option) ``` 加载模型完后,会输出提示如下,说明模型初始化的后端,以及运行的硬件设备 ``` [INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init Runtime initialized with Backend::OPENVINO in device Device::CPU. ``` ## 3. 预测图片检测结果 ``` python import cv2 im = cv2.imread("test_det.jpg") result = model.predict(im) print(result) ``` 预测完,输出预测结果如下 ``` DetectionResult: [xmin, ymin, xmax, ymax, score, label_id] 415.047180,89.311569, 506.009613, 283.863098, 0.950423, 0 163.665710,81.914932, 198.585342, 166.760895, 0.896433, 0 581.788635,113.027618, 612.623474, 198.521713, 0.842596, 0 267.217224,89.777306, 298.796051, 169.361526, 0.837951, 0 104.465584,45.482422, 127.688850, 93.533867, 0.773348, 0 ... ... ``` ## 4. 可视化图片预测结果 ``` python vis_im = fd.vision.visualize.vis_detection(im, result, score_threshold=0.5) cv2.imwrite("vis_image.jpg", vis_im) ``` 可视化执行完,打开`vis_image.jpg`可视化效果如下