""" # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import paddle import paddle.distributed as dist from glob import glob import os import argparse parser = argparse.ArgumentParser() parser.add_argument("--model_dir", type=str, required=True) args = parser.parse_args() rank = dist.get_rank() ep_num = dist.get_world_size() print("rank: ", rank) # merge tpn -> tp1 model_dir = args.model_dir save_merged_pp_dir = os.path.join(model_dir, "merged_tp1_state_split") os.makedirs(save_merged_pp_dir, exist_ok=True) model_path_pp = glob(os.path.join(model_dir, "shangxianv1_ep_hadamard_quantmodel_to_eval_pp*")) for p in model_path_pp: model_path_ep = os.path.join(p, f"model_state.ep0{rank}.pdparams") print(p, model_path_ep) state_dicts = paddle.load(model_path_ep, return_numpy=True) print("merge ep") print("p: ", p) for k, v in state_dicts.items(): v = paddle.to_tensor(v) if "mlp.experts" in k: k_list = k.split(".") export_id = rank * ep_num + int(k_list[5]) k_list[5] = str(export_id) k = ".".join(k_list) print(f"key: {k}") save_split_path = os.path.join(save_merged_pp_dir, k) paddle.save(v, save_split_path) elif rank == 0: save_split_path = os.path.join(save_merged_pp_dir, k) paddle.save(paddle.to_tensor(v), save_split_path) print(f"merge {p} end") print("merge end")