""" # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import paddle from paddle import nn from paddle.distributed import fleet from .utils import get_tensor def parallel_matmul(lm_output, logit_weights, parallel_output): """ Performs parallel matrix multiplication for large-scale language models. Args: lm_output (Tensor): The output tensor from the language model layers, which will be multiplied with the logit weights. logit_weights (Tensor): The weights used in the matrix multiplication, typically the weights of the output layer. parallel_output (bool): A flag indicating whether to return the parallel outputs or concatenate them. If True, returns the outputs from the parallel computation directly. If False, concatenates the outputs across the model parallel group before returning. Returns: Tensor: The result of the matrix multiplication. If `parallel_output` is True, returns the parallel outputs. If `parallel_output` is False and model parallel world size is greater than 1, returns the concatenated outputs across the model parallel group. Otherwise, returns the direct matrix multiplication result. """ hcg = fleet.get_hybrid_communicate_group() model_parallel_group = hcg.get_model_parallel_group() world_size = hcg.get_model_parallel_world_size() # rank = hcg.get_model_parallel_rank() if world_size > 1: input_parallel = paddle.distributed.collective._c_identity( lm_output, group=model_parallel_group) logits = paddle.matmul(input_parallel, logit_weights, transpose_y=True) if parallel_output: return logits return paddle.distributed.collective._c_concat( logits, group=model_parallel_group) else: logits = paddle.matmul(lm_output, logit_weights, transpose_y=True) return logits class ParallelLMHead(nn.Layer): """ "Parallelized LM head. """ def __init__( self, llm_config, num_embeddings, embedding_dim, prefix="", with_bias=False, tie_word_embeddings=None, ): """ Parallelized LMhead. Args: llm_config (LLMConfig): Arguments related to inference, containing attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim, num_attention_heads, and ffn_hidden_size. num_embeddings (int): vocabulary size. embedding_dim (int): size of hidden state. tie_embeddings_weight (bool, optional): Whether to share weights across model parallel ranks, defaults to None. prefix (str): full name of the layer in the state dict """ super(ParallelLMHead, self).__init__() self.use_moe = llm_config.model_config.use_moe self.linear_weight_key = prefix + ".weight" if with_bias: self.linear_bias_key = prefix + ".bias" else: self.linear_bias_key = None self.use_ep = llm_config.parallel_config.use_ep self.column_cut = True self.fused_linear = True hcg = fleet.get_hybrid_communicate_group() mp_rank = hcg.get_model_parallel_rank() ColumnParallelLinear = fleet.meta_parallel.ColumnParallelLinear RowParallelLinear = fleet.meta_parallel.RowParallelLinear self.tie_word_embeddings = tie_word_embeddings if self.tie_word_embeddings is None: if self.use_ep: self.weight = self.create_parameter( shape=[embedding_dim, num_embeddings], dtype=paddle.get_default_dtype(), is_bias=False, ) else: if self.column_cut: need_gather = True self.out_linear = ColumnParallelLinear( embedding_dim, num_embeddings, mp_group=fleet.get_hybrid_communicate_group(). get_model_parallel_group(), weight_attr=None, has_bias=True, gather_output=need_gather, fuse_matmul_bias=self.fused_linear, # False diff更小 ) else: self.out_linear = RowParallelLinear( embedding_dim, num_embeddings, mp_group=fleet.get_hybrid_communicate_group(). get_model_parallel_group(), weight_attr=None, has_bias=True, input_is_parallel=False, fuse_matmul_bias=self.fused_linear, # False diff更小 ) def load_state_dict(self, state_dict): """ Load the checkpoint state dictionary into the layer. Args: state_dict (dict): A dictionary containing the checkpoint weights and biases. """ if self.tie_word_embeddings is None: if self.use_ep: self.weight.set_value( get_tensor(state_dict.pop(self.linear_weight_key)).astype( paddle.get_default_dtype())) else: self.out_linear.weight.set_value( get_tensor(state_dict.pop(self.linear_weight_key)).astype( paddle.get_default_dtype())) bias = ( get_tensor(state_dict.pop(self.linear_bias_key)).astype( paddle.get_default_dtype() ) if self.linear_bias_key is not None else paddle.zeros( self.out_linear.bias.shape, dtype=paddle.get_default_dtype() ) ) self.out_linear.bias.set_value(bias) def forward(self, input): """ Defines the forward computation of the layer. Args: input (Tensor): The input tensor to the layer. Returns: Tensor: The output tensor after processing through the layer. """ logits = input if self.tie_word_embeddings is not None: logits = parallel_matmul(logits, self.tie_word_embeddings, False) else: if self.use_ep: logits = paddle.matmul(logits, self.weight) else: logits = self.out_linear(logits) return logits