// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/ocr/ppocr/cls_preprocessor.h" #include "fastdeploy/utils/perf.h" #include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h" #include "fastdeploy/function/concat.h" namespace fastdeploy { namespace vision { namespace ocr { ClassifierPreprocessor::ClassifierPreprocessor() { initialized_ = true; } void OcrClassifierResizeImage(FDMat* mat, const std::vector& cls_image_shape) { int imgC = cls_image_shape[0]; int imgH = cls_image_shape[1]; int imgW = cls_image_shape[2]; float ratio = float(mat->Width()) / float(mat->Height()); int resize_w; if (ceilf(imgH * ratio) > imgW) resize_w = imgW; else resize_w = int(ceilf(imgH * ratio)); Resize::Run(mat, resize_w, imgH); std::vector value = {0, 0, 0}; if (resize_w < imgW) { Pad::Run(mat, 0, 0, 0, imgW - resize_w, value); } } bool ClassifierPreprocessor::Run(std::vector* images, std::vector* outputs) { if (!initialized_) { FDERROR << "The preprocessor is not initialized." << std::endl; return false; } if (images->size() == 0) { FDERROR << "The size of input images should be greater than 0." << std::endl; return false; } for (size_t i = 0; i < images->size(); ++i) { FDMat* mat = &(images->at(i)); OcrClassifierResizeImage(mat, cls_image_shape_); NormalizeAndPermute::Run(mat, mean_, scale_, is_scale_); /* Normalize::Run(mat, mean_, scale_, is_scale_); HWC2CHW::Run(mat); Cast::Run(mat, "float"); */ } // Only have 1 output Tensor. outputs->resize(1); // Concat all the preprocessed data to a batch tensor std::vector tensors(images->size()); for (size_t i = 0; i < images->size(); ++i) { (*images)[i].ShareWithTensor(&(tensors[i])); tensors[i].ExpandDim(0); } if (tensors.size() == 1) { (*outputs)[0] = std::move(tensors[0]); } else { function::Concat(tensors, &((*outputs)[0]), 0); } return true; } } // namespace ocr } // namespace vision } // namespace fastdeploy