""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import os import unittest import weakref from fastdeploy.entrypoints.llm import LLM from fastdeploy.entrypoints.openai.protocol import ChatCompletionToolsParam MODEL_NAME = os.getenv("MODEL_PATH") + "/ERNIE-4.5-0.3B-Paddle" class TestChat(unittest.TestCase): """Test case for chat functionality""" COMMON_PREFIX = "I am a highly capable, compassionate, and trustworthy AI assistant dedicated to providing you with exceptional support. Whatever questions or challenges you may have, I will utilize my full capabilities to offer thoughtful and comprehensive assistance. As your intelligent companion, I consistently maintain honesty, transparency, and patience to ensure our interactions are both productive and enjoyable." PROMPTS = [ [{"content": "PaddlePaddle is ", "role": "user"}], [{"content": COMMON_PREFIX + "The color of tomato is ", "role": "user"}], [{"content": COMMON_PREFIX + "The equation 2+3= ", "role": "user"}], [{"content": COMMON_PREFIX + "The equation 4-1= ", "role": "user"}], ] @classmethod def setUpClass(cls): try: llm = LLM( model=MODEL_NAME, max_num_batched_tokens=4096, tensor_parallel_size=1, engine_worker_queue_port=int(os.getenv("FD_ENGINE_QUEUE_PORT")), cache_queue_port=int(os.getenv("FD_CACHE_QUEUE_PORT")), ) cls.llm = weakref.proxy(llm) except Exception as e: print(f"Setting up LLM failed: {e}") raise unittest.SkipTest(f"LLM initialization failed: {e}") @classmethod def tearDownClass(cls): """Clean up after all tests have run""" if hasattr(cls, "llm"): del cls.llm def test_chat(self): outputs = self.llm.chat(messages=self.PROMPTS, sampling_params=None) self.assertEqual(len(self.PROMPTS), len(outputs)) self.assertEqual(outputs[-1].num_cached_tokens, outputs[-2].num_cached_tokens) self.assertEqual(outputs[-1].num_cached_tokens, 64) def test_chat_with_tools(self): """Test chat with tools: 1. spliced_message (after chat_template) contains tool-related content 2. Model output contains tool_call """ prompts = [{"role": "user", "content": "北京海淀区今天天气怎么样?用摄氏度表示温度。"}] tools = [ { "type": "function", "function": { "name": "get_weather", "description": "Determine weather in my location", "parameters": { "type": "object", "properties": { "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, "unit": {"type": "string", "enum": ["c", "f"]}, }, "additionalProperties": False, "required": ["location", "unit"], }, "strict": True, }, } ] chat_template = "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within XML tags:\\n\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n\\n\\nFor each function call, return a json object with function name and arguments within XML tags:\\n\\n{\\\"name\\\": , \\\"arguments\\\": }\\n<|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and message.content is string and not(message.content.startswith('') and message.content.endswith('')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if message.content is string %}\n {%- set content = message.content %}\n {%- else %}\n {%- set content = '' %}\n {%- endif %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is string %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '' in content %}\n {%- set reasoning_content = content.split('')[0].rstrip('\\n').split('')[-1].lstrip('\\n') %}\n {%- set content = content.split('')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n\\n' + reasoning_content.strip('\\n') + '\\n\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n\\n' }}\n {{- content }}\n {{- '\\n' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '\\n\\n\\n\\n' }}\n {%- endif %}\n{%- endif %}" data_processor = self.llm.llm_engine.data_processor captured_spliced_message = None def capture_spliced_message(request_or_messages, **kwargs): """Wrap original messages2ids to capture spliced_message""" token_ids = data_processor.original_messages2ids(request_or_messages, **kwargs) nonlocal captured_spliced_message captured_spliced_message = request_or_messages.get("prompt_tokens") return token_ids data_processor.original_messages2ids = data_processor.messages2ids data_processor.messages2ids = capture_spliced_message try: outputs = self.llm.chat( messages=prompts, tools=tools, chat_template=chat_template, chat_template_kwargs={"enable_thinking": False}, stream=False, ) self.assertIsNotNone(captured_spliced_message, "Failed to capture spliced_message from messages2ids") self.assertIn( "", captured_spliced_message, f"spliced_message '{captured_spliced_message}' missing tag (chat_template not applied)", ) output = outputs[0] self.assertEqual(len(prompts), len(outputs)) self.assertTrue(hasattr(output, "outputs")) self.assertTrue(hasattr(output.outputs, "text")) finally: data_processor.messages2ids = data_processor.original_messages2ids def test_validate_tools(self): """Test both valid and invalid scenarios for _validate_tools method""" # Prepare valid test data valid_tool_dict = { "type": "function", "function": { "name": "get_weather", "description": "Get real-time weather of a city", "parameters": {"type": "object", "properties": {"city": {"type": "string"}}, "required": ["city"]}, }, } valid_tool_model = ChatCompletionToolsParam(**valid_tool_dict) valid_model_list = [valid_tool_model, valid_tool_model] valid_dict_list = [valid_tool_dict, valid_tool_dict] # Test valid scenarios # 1. Input is None self.assertIsNone(self.llm._validate_tools(None)) # 2. Input is single ChatCompletionToolsParam instance result = self.llm._validate_tools(valid_tool_model) self.assertEqual(len(result), 1) self.assertIsInstance(result[0], ChatCompletionToolsParam) # 3. Input is list of ChatCompletionToolsParam instances self.assertEqual(self.llm._validate_tools(valid_model_list), valid_model_list) # 4. Input is single valid dict result = self.llm._validate_tools(valid_tool_dict) self.assertEqual(len(result), 1) self.assertIsInstance(result[0], dict) self.assertEqual(result[0]["type"], "function") # 5. Input is list of valid dicts result = self.llm._validate_tools(valid_dict_list) self.assertEqual(len(result), 2) self.assertIsInstance(result[1], dict) # 6. Input is empty list self.assertIsNone(self.llm._validate_tools([])) # Test invalid scenarios (should raise ValueError) # 1. Input is string (invalid top-level type) with self.assertRaises(ValueError): self.llm._validate_tools("invalid_string") # 2. Input list contains non-dict element with self.assertRaises(ValueError): self.llm._validate_tools([valid_tool_dict, 123]) # 3. Tool dict missing required field (function.name) invalid_tool_missing_name = {"type": "function", "function": {"description": "Missing 'name' field"}} with self.assertRaises(ValueError): self.llm._validate_tools(invalid_tool_missing_name) # 4. Tool dict with wrong 'type' value invalid_tool_wrong_type = {"type": "invalid_type", "function": {"name": "test", "description": "Wrong type"}} with self.assertRaises(ValueError): self.llm._validate_tools(invalid_tool_wrong_type) # 5. Input is boolean with self.assertRaises(ValueError): self.llm._validate_tools(True) if __name__ == "__main__": unittest.main()