// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/runtime.h" namespace fd = fastdeploy; void build_test_data(std::vector> &prewarm_datas, bool is_dynamic) { if (is_dynamic == false) { std::vector inputs_data; inputs_data.resize(1 * 3 * 224 * 224); for (size_t i = 0; i < inputs_data.size(); ++i) { inputs_data[i] = std::rand() % 1000 / 1000.0f; } prewarm_datas[0][0].Resize({1, 3, 224, 224}, fd::FDDataType::FP32); fd::FDTensor::CopyBuffer(prewarm_datas[0][0].Data(), inputs_data.data(), prewarm_datas[0][0].Nbytes()); return; } //max std::vector inputs_data_max; inputs_data_max.resize(1 * 3 * 224 * 224); for (size_t i = 0; i < inputs_data_max.size(); ++i) { inputs_data_max[i] = std::rand() % 1000 / 1000.0f; } prewarm_datas[0][0].Resize({1, 3, 224, 224}, fd::FDDataType::FP32); fd::FDTensor::CopyBuffer(prewarm_datas[0][0].Data(), inputs_data_max.data(), prewarm_datas[0][0].Nbytes()); //min std::vector inputs_data_min; inputs_data_min.resize(1 * 3 * 224 * 224); for (size_t i = 0; i < inputs_data_min.size(); ++i) { inputs_data_min[i] = std::rand() % 1000 / 1000.0f; } prewarm_datas[1][0].Resize({1, 3, 224, 224}, fd::FDDataType::FP32); fd::FDTensor::CopyBuffer(prewarm_datas[1][0].Data(), inputs_data_min.data(), prewarm_datas[1][0].Nbytes()); //opt std::vector inputs_data_opt; inputs_data_opt.resize(1 * 3 * 224 * 224); for (size_t i = 0; i < inputs_data_opt.size(); ++i) { inputs_data_opt[i] = std::rand() % 1000 / 1000.0f; } prewarm_datas[2][0].Resize({1, 3, 224, 224}, fd::FDDataType::FP32); fd::FDTensor::CopyBuffer(prewarm_datas[2][0].Data(), inputs_data_opt.data(), prewarm_datas[2][0].Nbytes()); } int main(int argc, char* argv[]) { // prewarm_datas bool is_dynamic = true; std::vector> prewarm_datas; if (is_dynamic) { prewarm_datas.resize(3); prewarm_datas[0].resize(1); prewarm_datas[1].resize(1); prewarm_datas[2].resize(1); } else { prewarm_datas.resize(1); prewarm_datas[0].resize(1); } build_test_data(prewarm_datas, is_dynamic); std::string model_file = "std_resnet50_script.pt"; // setup option fd::RuntimeOption runtime_option; runtime_option.SetModelPath(model_file, "", fd::ModelFormat::TORCHSCRIPT); runtime_option.UsePorosBackend(); runtime_option.UseGpu(0); runtime_option.is_dynamic = true; // Compile runtime std::unique_ptr runtime = std::unique_ptr(new fd::Runtime()); if (!runtime->Compile(prewarm_datas, runtime_option)) { std::cerr << "--- Init FastDeploy Runitme Failed! " << "\n--- Model: " << model_file << std::endl; return -1; } else { std::cout << "--- Init FastDeploy Runitme Done! " << "\n--- Model: " << model_file << std::endl; } std::vector input_tensors; input_tensors.resize(1); std::vector output_tensors; output_tensors.resize(1); std::vector inputs_data; inputs_data.resize(1 * 3 * 224 * 224); for (size_t i = 0; i < inputs_data.size(); ++i) { inputs_data[i] = std::rand() % 1000 / 1000.0f; } input_tensors[0].SetExternalData({1, 3, 224, 224}, fd::FDDataType::FP32, inputs_data.data()); runtime->Infer(input_tensors, &output_tensors); output_tensors[0].PrintInfo(); return 0; }