// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/fastdeploy_model.h" #include "fastdeploy/vision/common/processors/transform.h" #include "fastdeploy/vision/common/result.h" #include "fastdeploy/vision/ocr/ppocr/utils/ocr_postprocess_op.h" namespace fastdeploy { namespace vision { namespace ocr { class FASTDEPLOY_DECL Classifier : public FastDeployModel { public: Classifier(); // 当model_format为ONNX时,无需指定params_file // 当model_format为Paddle时,则需同时指定model_file & params_file Classifier(const std::string& model_file, const std::string& params_file = "", const RuntimeOption& custom_option = RuntimeOption(), const Frontend& model_format = Frontend::PADDLE); // 定义模型的名称 std::string ModelName() const { return "ppocr/ocr_cls"; } // 模型预测接口,即用户调用的接口 virtual bool Predict(cv::Mat* img, std::tuple* result); // pre & post parameters float cls_thresh; std::vector cls_image_shape; int cls_batch_num; std::vector mean; std::vector scale; bool is_scale; private: // 初始化函数,包括初始化后端,以及其它模型推理需要涉及的操作 bool Initialize(); // 输入图像预处理操作 // FDTensor为预处理后的Tensor数据,传给后端进行推理 bool Preprocess(Mat* img, FDTensor* output); // 后端推理结果后处理,输出给用户 // infer_result 为后端推理后的输出Tensor bool Postprocess(FDTensor& infer_result, std::tuple* result); }; } // namespace ocr } // namespace vision } // namespace fastdeploy