# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import multiprocessing as mp import os import queue import unittest from multiprocessing import Process, Queue import numpy as np import paddle from fastdeploy.model_executor.ops.gpu import set_data_ipc, share_external_data def _create_test_tensor(shape, dtype): if "float" in str(dtype): return paddle.rand(shape=shape, dtype=dtype) elif "int" in str(dtype): return paddle.randint(-100, 100, shape=shape, dtype=dtype) elif "bool" in str(dtype): return paddle.rand(shape=shape, dtype=dtype) > 0.5 def _producer_proc(shm_name, shape, dtype, ready_q, done_q, error_q): # Create shared memory try: paddle.device.set_device("gpu:0") t = _create_test_tensor(shape, dtype) set_data_ipc(t, shm_name) ready_q.put(("ready", t.numpy().tolist())) _ = done_q.get(timeout=20) except Exception as e: error_q.put(("producer_error", str(e))) def _consumer_proc(shm_name, shape, dtype, result_q, error_q): # Shard data try: paddle.device.set_device("gpu:0") dummy = paddle.zeros(shape, dtype=dtype) shared = share_external_data(dummy, shm_name, shape) result_q.put(("ok", shared.numpy().tolist())) except Exception as e: error_q.put(("consumer_error", str(e))) # Use spawn to avoid forking CUDA contexts try: mp.set_start_method("spawn", force=True) except RuntimeError: pass class TestShareExternalData(unittest.TestCase): def setUp(self): paddle.seed(2024) np.random.seed(42) if not paddle.device.is_compiled_with_cuda(): self.skipTest("CUDA not available, skipping GPU tests") # Set device to GPU paddle.device.set_device("gpu:0") self.test_shape = [4, 8] self.dtype = paddle.float32 self.shm_prefix = f"test_share_external_{os.getpid()}" def _run_minimal_cross_process(self): ready_q = Queue() result_q = Queue() error_q = Queue() done_q = Queue() p = Process( target=_producer_proc, args=(self.shm_prefix, self.test_shape, self.dtype, ready_q, done_q, error_q) ) p.start() # wait producer ready try: status, original_data = ready_q.get(timeout=20) self.assertEqual(status, "ready") except Exception: p.terminate() self.fail("Producer did not become ready in time") c = Process(target=_consumer_proc, args=(self.shm_prefix, self.test_shape, self.dtype, result_q, error_q)) c.start() c.join(timeout=30) # signal producer to exit now done_q.put("done") p.join(timeout=30) # check errors first (non-blocking) errors = [] try: while True: errors.append(error_q.get_nowait()) except queue.Empty: pass self.assertFalse(errors, f"Errors occurred: {errors}") # verify data self.assertFalse(result_q.empty(), "No result from consumer") status, shared_data = result_q.get() self.assertEqual(status, "ok") np.testing.assert_allclose(np.array(original_data), np.array(shared_data), rtol=1e-5) def test_producer_consumer_processes(self): self._run_minimal_cross_process() def tearDown(self): paddle.device.cuda.empty_cache() if __name__ == "__main__": unittest.main()