// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/detection/ppdet/yolox.h" namespace fastdeploy { namespace vision { namespace detection { PaddleYOLOX::PaddleYOLOX(const std::string& model_file, const std::string& params_file, const std::string& config_file, const RuntimeOption& custom_option, const ModelFormat& model_format) { config_file_ = config_file; valid_cpu_backends = {Backend::ORT, Backend::PDINFER}; valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT}; runtime_option = custom_option; runtime_option.model_format = model_format; runtime_option.model_file = model_file; runtime_option.params_file = params_file; background_label = -1; keep_top_k = 1000; nms_eta = 1; nms_threshold = 0.65; nms_top_k = 10000; normalized = true; score_threshold = 0.001; initialized = Initialize(); } bool PaddleYOLOX::Preprocess(Mat* mat, std::vector* outputs) { int origin_w = mat->Width(); int origin_h = mat->Height(); float scale[2] = {1.0, 1.0}; for (size_t i = 0; i < processors_.size(); ++i) { if (!(*(processors_[i].get()))(mat)) { FDERROR << "Failed to process image data in " << processors_[i]->Name() << "." << std::endl; return false; } if (processors_[i]->Name().find("Resize") != std::string::npos) { scale[0] = mat->Height() * 1.0 / origin_h; scale[1] = mat->Width() * 1.0 / origin_w; } } outputs->resize(2); (*outputs)[0].name = InputInfoOfRuntime(0).name; mat->ShareWithTensor(&((*outputs)[0])); // reshape to [1, c, h, w] (*outputs)[0].shape.insert((*outputs)[0].shape.begin(), 1); (*outputs)[1].Allocate({1, 2}, FDDataType::FP32, InputInfoOfRuntime(1).name); float* ptr = static_cast((*outputs)[1].MutableData()); ptr[0] = scale[0]; ptr[1] = scale[1]; return true; } } // namespace detection } // namespace vision } // namespace fastdeploy