# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd import cv2 import os import numpy as np import pynvml import psutil import GPUtil import time def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--model", required=True, help="Path of PaddleSeg model.") parser.add_argument( "--image", type=str, required=False, help="Path of test image file.") parser.add_argument( "--cpu_num_thread", type=int, default=8, help="default number of cpu thread.") parser.add_argument( "--device_id", type=int, default=0, help="device(gpu) id") parser.add_argument( "--iter_num", required=True, type=int, default=300, help="number of iterations for computing performace.") parser.add_argument( "--device", default="cpu", help="Type of inference device, support 'cpu' or 'gpu'.") parser.add_argument( "--backend", type=str, default="ort", help="inference backend, ort, ov, trt, paddle.") parser.add_argument( "--enable_trt_fp16", type=bool, default=False, help="whether enable fp16 in trt backend") args = parser.parse_args() return args def build_option(args): option = fd.RuntimeOption() device = args.device backend = args.backend option.set_cpu_thread_num(args.cpu_num_thread) if device == "gpu": option.use_gpu(args.device_id) if backend == "trt": assert device == "gpu", "the trt backend need device==gpu" option.use_trt_backend() if args.enable_trt_fp16: option.enable_trt_fp16() elif backend == "ov": assert device == "cpu", "the openvino backend need device==cpu" option.use_openvino_backend() elif backend == "paddle": option.use_paddle_backend() elif backend == "ort": option.use_ort_backend() else: print("%s is an unsupported backend" % backend) return option def get_current_memory_mb(gpu_id=None): pid = os.getpid() p = psutil.Process(pid) info = p.memory_full_info() cpu_mem = info.uss / 1024. / 1024. gpu_mem = 0 if gpu_id is not None: pynvml.nvmlInit() handle = pynvml.nvmlDeviceGetHandleByIndex(0) meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle) gpu_mem = meminfo.used / 1024. / 1024. return cpu_mem, gpu_mem def get_current_gputil(gpu_id): GPUs = GPUtil.getGPUs() gpu_load = GPUs[gpu_id].load return gpu_load if __name__ == '__main__': args = parse_arguments() option = build_option(args) model_file = os.path.join(args.model, "model.pdmodel") params_file = os.path.join(args.model, "model.pdiparams") config_file = os.path.join(args.model, "deploy.yaml") gpu_id = args.device_id end2end_statis = list() cpu_mem = list() gpu_mem = list() gpu_util = list() if args.device == "cpu": file_path = args.model + "_model_" + args.backend + "_" + \ args.device + "_" + str(args.cpu_num_thread) + ".txt" else: if args.enable_trt_fp16: file_path = args.model + "_model_" + args.backend + "_fp16_" + args.device + ".txt" else: file_path = args.model + "_model_" + args.backend + "_" + args.device + ".txt" f = open(file_path, "w") f.writelines("===={}====: \n".format(file_path.split("/")[1][:-4])) try: model = fd.vision.segmentation.PaddleSegModel( model_file, params_file, config_file, runtime_option=option) model.enable_record_time_of_runtime() for i in range(args.iter_num): im = cv2.imread(args.image) start = time.time() result = model.predict(im) end2end_statis.append(time.time() - start) gpu_util.append(get_current_gputil(gpu_id)) cm, gm = get_current_memory_mb(gpu_id) cpu_mem.append(cm) gpu_mem.append(gm) runtime_statis = model.print_statis_info_of_runtime() warmup_iter = args.iter_num // 5 repeat_iter = args.iter_num - warmup_iter end2end_statis_repeat = end2end_statis[warmup_iter:] cpu_mem_repeat = cpu_mem[warmup_iter:] gpu_mem_repeat = gpu_mem[warmup_iter:] gpu_util_repeat = gpu_util[warmup_iter:] dump_result = dict() dump_result["runtime"] = runtime_statis["avg_time"] * 1000 dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000 dump_result["cpu_rss_mb"] = np.mean(cpu_mem_repeat) dump_result["gpu_rss_mb"] = np.mean(gpu_mem_repeat) dump_result["gpu_util"] = np.mean(gpu_util_repeat) f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"]))) f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"]))) f.writelines("cpu_rss_mb: {} \n".format( str(dump_result["cpu_rss_mb"]))) f.writelines("gpu_rss_mb: {} \n".format( str(dump_result["gpu_rss_mb"]))) f.writelines("gpu_util: {} \n".format(str(dump_result["gpu_util"]))) except: f.writelines("!!!!!Infer Failed\n") f.close()