# PP-PicoDet + PP-TinyPose (Pipeline) C++部署示例 本目录下提供`det_keypoint_unite_infer.cc`快速完成多人模型配置 PP-PicoDet + PP-TinyPose 在CPU/GPU,以及GPU上通过TensorRT加速部署的`单图多人关键点检测`示例。执行如下脚本即可完成 >> **注意**: PP-TinyPose单模型独立部署,请参考[PP-TinyPose 单模型](../../tiny_pose/cpp/README.md) 在部署前,需确认以下两个步骤 - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) 以Linux上推理为例,在本目录执行如下命令即可完成编译测试 ```bash wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.6.0.tgz tar xvf fastdeploy-linux-x64-gpu-0.6.0.tgz cd fastdeploy-linux-x64-gpu-0.6.0/examples/vision/keypointdetection/tiny_pose/cpp/ mkdir build cd build cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.6.0 make -j # 下载PP-TinyPose和PP-PicoDet模型文件和测试图片 wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz tar -xvf PP_TinyPose_256x192_infer.tgz wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_PicoDet_V2_S_Pedestrian_320x320_infer.tgz tar -xvf PP_PicoDet_V2_S_Pedestrian_320x320_infer.tgz wget https://bj.bcebos.com/paddlehub/fastdeploy/000000018491.jpg # CPU推理 ./infer_demo PP_PicoDet_V2_S_Pedestrian_320x320_infer PP_TinyPose_256x192_infer 000000018491.jpg 0 # GPU推理 ./infer_demo PP_PicoDet_V2_S_Pedestrian_320x320_infer PP_TinyPose_256x192_infer 000000018491.jpg 1 # GPU上TensorRT推理 ./infer_demo PP_PicoDet_V2_S_Pedestrian_320x320_infer PP_TinyPose_256x192_infer 000000018491.jpg 2 ``` 运行完成可视化结果如下图所示
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考: - [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md) ## PP-TinyPose C++接口 ### PP-TinyPose类 ```c++ fastdeploy::pipeline::PPTinyPose( fastdeploy::vision::detection::PPYOLOE* det_model, fastdeploy::vision::keypointdetection::PPTinyPose* pptinypose_model) ``` PPTinyPose Pipeline模型加载和初始化。 **参数** > * **model_det_modelfile**(fastdeploy::vision::detection): 初始化后的检测模型,参考[PP-TinyPose](../../tiny_pose/README.md) > * **pptinypose_model**(fastdeploy::vision::keypointdetection): 初始化后的检测模型[Detection](../../../detection/paddledetection/README.md),暂时只提供PaddleDetection系列 #### Predict函数 > ```c++ > PPTinyPose::Predict(cv::Mat* im, KeyPointDetectionResult* result) > ``` > > 模型预测接口,输入图像直接输出关键点检测结果。 > > **参数** > > > * **im**: 输入图像,注意需为HWC,BGR格式 > > * **result**: 关键点检测结果,包括关键点的坐标以及关键点对应的概率值, KeyPointDetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/) ### 类成员属性 #### 后处理参数 > > * **detection_model_score_threshold**(bool): 输入PP-TinyPose模型前,Detectin模型过滤检测框的分数阈值 - [模型介绍](../../) - [Python部署](../python) - [视觉模型预测结果](../../../../../docs/api/vision_results/) - [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)