# PP-PicoDet + PP-TinyPose (Pipeline) C++部署示例 本目录下提供`det_keypoint_unite_infer.cc`快速完成多人模型配置 PP-PicoDet + PP-TinyPose 在CPU/GPU,以及GPU上通过TensorRT加速部署的`单图多人关键点检测`示例。执行如下脚本即可完成 >> **注意**: PP-TinyPose单模型独立部署,请参考[PP-TinyPose 单模型](../../tiny_pose/cpp/README.md) 在部署前,需确认以下两个步骤 - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) 以Linux上推理为例,在本目录执行如下命令即可完成编译测试 ```bash wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.6.0.tgz tar xvf fastdeploy-linux-x64-gpu-0.6.0.tgz cd fastdeploy-linux-x64-gpu-0.6.0/examples/vision/keypointdetection/tiny_pose/cpp/ mkdir build cd build cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.6.0 make -j # 下载PP-TinyPose和PP-PicoDet模型文件和测试图片 wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz tar -xvf PP_TinyPose_256x192_infer.tgz wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_PicoDet_V2_S_Pedestrian_320x320_infer.tgz tar -xvf PP_PicoDet_V2_S_Pedestrian_320x320_infer.tgz wget https://bj.bcebos.com/paddlehub/fastdeploy/000000018491.jpg # CPU推理 ./infer_demo PP_PicoDet_V2_S_Pedestrian_320x320_infer PP_TinyPose_256x192_infer 000000018491.jpg 0 # GPU推理 ./infer_demo PP_PicoDet_V2_S_Pedestrian_320x320_infer PP_TinyPose_256x192_infer 000000018491.jpg 1 # GPU上TensorRT推理 ./infer_demo PP_PicoDet_V2_S_Pedestrian_320x320_infer PP_TinyPose_256x192_infer 000000018491.jpg 2 ``` 运行完成可视化结果如下图所示