# AdaFace C++部署示例 本目录下提供infer_xxx.py快速完成AdaFace模型在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。 以AdaFace为例提供`infer.cc`快速完成AdaFace在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。 在部署前,需确认以下两个步骤 - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) 以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试 ```bash # “如果预编译库不包含本模型,请从最新代码编译SDK” mkdir build cd build wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.6.0.tgz tar xvf fastdeploy-linux-x64-0.6.0.tgz cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.6.0 make -j #下载测试图片 wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_0.JPG wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_1.JPG wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_2.JPG # 如果为Paddle模型,运行以下代码 wget https://bj.bcebos.com/paddlehub/fastdeploy/mobilefacenet_adaface.tgz tar zxvf mobilefacenet_adaface.tgz -C ./ # CPU推理 ./infer_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \ mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \ test_lite_focal_arcface_0.JPG \ test_lite_focal_arcface_1.JPG \ test_lite_focal_arcface_2.JPG \ 0 # GPU推理 ./infer_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \ mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \ test_lite_focal_arcface_0.JPG \ test_lite_focal_arcface_1.JPG \ test_lite_focal_arcface_2.JPG \ 1 # GPU上TensorRT推理 ./infer_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \ mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \ test_lite_focal_arcface_0.JPG \ test_lite_focal_arcface_1.JPG \ test_lite_focal_arcface_2.JPG \ 2 ``` 运行完成可视化结果如下图所示