// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/vision/common/processors/transform.h" #include "fastdeploy/vision/common/processors/manager.h" #include "fastdeploy/vision/common/result.h" namespace fastdeploy { namespace vision { namespace ocr { /*! @brief Preprocessor object for Classifier serials model. */ class FASTDEPLOY_DECL ClassifierPreprocessor : public ProcessorManager { public: ClassifierPreprocessor(); using ProcessorManager::Run; /** \brief Process the input image and prepare input tensors for runtime * * \param[in] images The input data list, all the elements are FDMat * \param[in] outputs The output tensors which will be fed into runtime * \return true if the preprocess successed, otherwise false */ bool Run(std::vector* images, std::vector* outputs, size_t start_index, size_t end_index); /** \brief Implement the virtual function of ProcessorManager, Apply() is the * body of Run(). Apply() contains the main logic of preprocessing, Run() is * called by users to execute preprocessing * * \param[in] image_batch The input image batch * \param[in] outputs The output tensors which will feed in runtime * \return true if the preprocess successed, otherwise false */ virtual bool Apply(FDMatBatch* image_batch, std::vector* outputs); /// Set preprocess normalize parameters, please call this API to customize /// the normalize parameters, otherwise it will use the default normalize /// parameters. void SetNormalize(const std::vector& mean, const std::vector& std, bool is_scale) { normalize_op_ = std::make_shared(mean, std, is_scale); } /// Set cls_image_shape for the classification preprocess void SetClsImageShape(const std::vector& cls_image_shape) { cls_image_shape_ = cls_image_shape; } /// Get cls_image_shape for the classification preprocess std::vector GetClsImageShape() const { return cls_image_shape_; } /// This function will disable normalize in preprocessing step. void DisableNormalize() { disable_permute_ = true; } /// This function will disable hwc2chw in preprocessing step. void DisablePermute() { disable_normalize_ = true; } private: void OcrClassifierResizeImage(FDMat* mat, const std::vector& cls_image_shape); // for recording the switch of hwc2chw bool disable_permute_ = false; // for recording the switch of normalize bool disable_normalize_ = false; std::vector cls_image_shape_ = {3, 48, 192}; std::shared_ptr resize_op_; std::shared_ptr pad_op_; std::shared_ptr normalize_op_; std::shared_ptr hwc2chw_op_; }; } // namespace ocr } // namespace vision } // namespace fastdeploy