// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/benchmark/utils.h" #include "fastdeploy/vision.h" #include "flags.h" bool RunModel(std::string model_file, std::string image_file, size_t warmup, size_t repeats, size_t sampling_interval) { // Initialization auto option = fastdeploy::RuntimeOption(); if (!CreateRuntimeOption(&option)) { PrintUsage(); return false; } if (FLAGS_profile_mode == "runtime") { option.EnableProfiling(FLAGS_include_h2d_d2h, repeats, warmup); } auto model = fastdeploy::vision::detection::YOLOv5(model_file, "", option); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return false; } auto im = cv::imread(image_file); // For collect memory info fastdeploy::benchmark::ResourceUsageMonitor resource_moniter( sampling_interval, FLAGS_device_id); if (FLAGS_collect_memory_info) { resource_moniter.Start(); } // For Runtime if (FLAGS_profile_mode == "runtime") { fastdeploy::vision::DetectionResult res; if (!model.Predict(im, &res)) { std::cerr << "Failed to predict." << std::endl; return false; } double profile_time = model.GetProfileTime() * 1000; std::cout << "Runtime(ms): " << profile_time << "ms." << std::endl; auto vis_im = fastdeploy::vision::VisDetection(im, res); cv::imwrite("vis_result.jpg", vis_im); std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; } else { // For End2End // Step1: warm up for warmup times std::cout << "Warmup " << warmup << " times..." << std::endl; for (int i = 0; i < warmup; i++) { fastdeploy::vision::DetectionResult res; if (!model.Predict(im, &res)) { std::cerr << "Failed to predict." << std::endl; return false; } } // Step2: repeat for repeats times std::cout << "Counting time..." << std::endl; std::cout << "Repeat " << repeats << " times..." << std::endl; fastdeploy::vision::DetectionResult res; fastdeploy::TimeCounter tc; tc.Start(); for (int i = 0; i < repeats; i++) { if (!model.Predict(im, &res)) { std::cerr << "Failed to predict." << std::endl; return false; } } tc.End(); double end2end = tc.Duration() / repeats * 1000; std::cout << "End2End(ms): " << end2end << "ms." << std::endl; auto vis_im = fastdeploy::vision::VisDetection(im, res); cv::imwrite("vis_result.jpg", vis_im); std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; } if (FLAGS_collect_memory_info) { float cpu_mem = resource_moniter.GetMaxCpuMem(); float gpu_mem = resource_moniter.GetMaxGpuMem(); float gpu_util = resource_moniter.GetMaxGpuUtil(); std::cout << "cpu_pss_mb: " << cpu_mem << "MB." << std::endl; std::cout << "gpu_pss_mb: " << gpu_mem << "MB." << std::endl; std::cout << "gpu_util: " << gpu_util << std::endl; resource_moniter.Stop(); } return true; } int main(int argc, char* argv[]) { google::ParseCommandLineFlags(&argc, &argv, true); int repeats = FLAGS_repeat; int warmup = FLAGS_warmup; int sampling_interval = FLAGS_sampling_interval; // Run model if (!RunModel(FLAGS_model, FLAGS_image, warmup, repeats, sampling_interval)) { exit(1); } return 0; }