[English](../../en/faq/use_cpp_sdk_on_android.md) | 中文 # 在 Android 中通过 JNI 使用 FastDeploy C++ SDK 本文档将以PicoDet为例,讲解如何通过JNI,将FastDeploy中的模型封装到Android中进行调用。阅读本文档,您至少需要了解C++、Java、JNI以及Android的基础知识。如果您主要关注如何在Java层如何调用FastDeploy的API,则可以不阅读本文档。 ## 目录 - [在 Android 中通过 JNI 使用 FastDeploy C++ SDK](#在-android-中通过-jni-使用-fastdeploy-c-sdk) - [目录](#目录) - [新建Java类并定义native API](#新建java类并定义native-api) - [Android Studio 生成JNI函数定义](#android-studio-生成jni函数定义) - [在C++层实现JNI函数](#在c层实现jni函数) - [编写CMakeLists.txt及配置build.gradle](#编写cmakeliststxt及配置buildgradle) - [更多FastDeploy Android 使用案例](#更多fastdeploy-android-使用案例) ## 新建Java类并定义native API
```java public class PicoDet { protected long mNativeModelContext = 0; // Context from native. protected boolean mInitialized = false; // ... // Bind predictor from native context. private static native long bindNative(String modelFile, String paramsFile, String configFile, int cpuNumThread, boolean enableLiteFp16, int litePowerMode, String liteOptimizedModelDir, boolean enableRecordTimeOfRuntime, String labelFile); // Call prediction from native context. private static native long predictNative(long nativeModelContext, Bitmap ARGB8888Bitmap, boolean saved, String savedImagePath, float scoreThreshold, boolean rendering); // Release buffers allocated in native context. private static native boolean releaseNative(long nativeModelContext); // Initializes at the beginning. static { FastDeployInitializer.init(); } } ``` 这些被标记为native的接口是需要通过JNI的方式实现,并在Java层供PicoDet类调用。完整的PicoDet Java代码请参考 [PicoDet.java](../../../java/android/fastdeploy/src/main/java/com/baidu/paddle/fastdeploy/vision/detection/PicoDet.java) 。各个函数说明如下: - `bindNative`: C++层初始化模型资源,如果成功初始化,则返回指向该模型的指针(long类型),否则返回0指针 - `predictNative`: 通过已经初始化好的模型指针,在C++层执行预测代码,如果预测成功则返回指向预测结果的指针,否则返回0指针。注意,该结果指针在当次预测使用完之后需要释放,具体操作请参考 [PicoDet.java](../../../java/android/fastdeploy/src/main/java/com/baidu/paddle/fastdeploy/vision/detection/PicoDet.java) 中的predict函数。 - `releaseNative`: 根据传入的模型指针,在C++层释放模型资源。 ## Android Studio 生成JNI函数定义
Android Studio 生成 JNI 函数定义: 鼠标停留在Java中定义的native函数上,Android Studio 便会提示是否要创建JNI函数定义;这里,我们把JNI函数定义创建在一个事先创建好的c++文件`picodet_jni.cc`上; - 使用Android Studio创建JNI函数定义: ![](https://user-images.githubusercontent.com/31974251/197341065-cdf8f626-4bb1-4a57-8d7a-80b382fe994e.png) - 将JNI函数定义创建在picodet_jni.cc上: ![](https://user-images.githubusercontent.com/31974251/197341190-b887dec5-fa75-43c9-9ab3-7ead50c0eb45.png) - 创建的JNI函数定义如下: ![](https://user-images.githubusercontent.com/31974251/197341274-e9671bac-9e77-4043-a870-9d5db914586b.png) 其他native函数对应的JNI函数定义的创建和此流程一样。 ## 在C++层实现JNI函数
以下为PicoDet JNI层实现的示例,相关的辅助函数不在此处赘述,完整的C++代码请参考 [android/app/src/main/cpp](../../../examples/vision/detection/paddledetection/android/app/src/main/cpp/). ```C++ // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include // NOLINT #include "fastdeploy_jni/convert_jni.h" // NOLINT #include "fastdeploy_jni/assets_loader_jni.h" // NOLINT #include "fastdeploy_jni/runtime_option_jni.h" // NOLINT #include "fastdeploy_jni/vision/results_jni.h" // NOLINT #include "fastdeploy_jni/vision/detection/detection_utils_jni.h" // NOLINT namespace fni = fastdeploy::jni; namespace vision = fastdeploy::vision; namespace detection = fastdeploy::vision::detection; #ifdef __cplusplus extern "C" { #endif JNIEXPORT jlong JNICALL Java_com_baidu_paddle_fastdeploy_vision_detection_PicoDet_bindNative( JNIEnv *env, jobject thiz, jstring model_file, jstring params_file, jstring config_file, jobject runtime_option, jstring label_file) { auto c_model_file = fni::ConvertTo(env, model_file); auto c_params_file = fni::ConvertTo(env, params_file); auto c_config_file = fni::ConvertTo(env, config_file); auto c_label_file = fni::ConvertTo(env, label_file); auto c_runtime_option = fni::NewCxxRuntimeOption(env, runtime_option); auto c_model_ptr = new detection::PicoDet( c_model_file, c_params_file, c_config_file, c_runtime_option); INITIALIZED_OR_RETURN(c_model_ptr) #ifdef ENABLE_RUNTIME_PERF c_model_ptr->EnableRecordTimeOfRuntime(); #endif if (!c_label_file.empty()) { fni::AssetsLoader::LoadDetectionLabels(c_label_file); } vision::EnableFlyCV(); return reinterpret_cast(c_model_ptr); } JNIEXPORT jobject JNICALL Java_com_baidu_paddle_fastdeploy_vision_detection_PicoDet_predictNative( JNIEnv *env, jobject thiz, jlong cxx_context, jobject argb8888_bitmap, jboolean save_image, jstring save_path, jboolean rendering, jfloat score_threshold) { if (cxx_context == 0) { return NULL; } cv::Mat c_bgr; if (!fni::ARGB888Bitmap2BGR(env, argb8888_bitmap, &c_bgr)) { return NULL; } auto c_model_ptr = reinterpret_cast(cxx_context); vision::DetectionResult c_result; auto t = fni::GetCurrentTime(); c_model_ptr->Predict(&c_bgr, &c_result); PERF_TIME_OF_RUNTIME(c_model_ptr, t) if (rendering) { fni::RenderingDetection(env, c_bgr, c_result, argb8888_bitmap, save_image, score_threshold, save_path); } return fni::NewJavaResultFromCxx(env, reinterpret_cast(&c_result), vision::ResultType::DETECTION); } JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_fastdeploy_vision_detection_PicoDet_releaseNative( JNIEnv *env, jobject thiz, jlong cxx_context) { if (cxx_context == 0) { return JNI_FALSE; } auto c_model_ptr = reinterpret_cast(cxx_context); PERF_TIME_OF_RUNTIME(c_model_ptr, -1) delete c_model_ptr; LOGD("[End] Release PicoDet in native !"); return JNI_TRUE; } #ifdef __cplusplus } #endif ``` ## 编写CMakeLists.txt及配置build.gradle
实现好的JNI代码,需要被编译成so库,才能被Java调用,为实现该目的,需要在build.gradle中添加JNI项目支持,并编写对应的CMakeLists.txt。 - build.gradle中配置NDK、CMake以及Android ABI ```java android { defaultConfig { // 省略其他配置 ... externalNativeBuild { cmake { arguments '-DANDROID_PLATFORM=android-21', '-DANDROID_STL=c++_shared', "-DANDROID_TOOLCHAIN=clang" abiFilters 'armeabi-v7a', 'arm64-v8a' cppFlags "-std=c++11" } } } // 省略其他配置 ... externalNativeBuild { cmake { path file('src/main/cpp/CMakeLists.txt') version '3.10.2' } } sourceSets { main { jniLibs.srcDirs = ['libs'] } } ndkVersion '20.1.5948944' } ``` - 编写CMakeLists.txt示例 ```cmake cmake_minimum_required(VERSION 3.10.2) project("fastdeploy_jni") # 其中 xxx 表示对应C++ SDK的版本号 set(FastDeploy_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../../../libs/fastdeploy-android-xxx-shared") find_package(FastDeploy REQUIRED) include_directories(${CMAKE_CURRENT_SOURCE_DIR}) include_directories(${FastDeploy_INCLUDE_DIRS}) add_library( fastdeploy_jni SHARED utils_jni.cc bitmap_jni.cc vision/results_jni.cc vision/visualize_jni.cc vision/detection/picodet_jni.cc vision/classification/paddleclas_model_jni.cc) find_library(log-lib log) target_link_libraries( # Specifies the target library. fastdeploy_jni jnigraphics ${FASTDEPLOY_LIBS} GLESv2 EGL ${log-lib} ) ``` 完整的工程示例,请参考 [CMakelists.txt](../../../java/android/fastdeploy/src/main/cpp/CMakeLists.txt) 以及 [build.gradle](../../../java/android/fastdeploy/build.gradle). ## 更多FastDeploy Android 使用案例
更多FastDeploy Android 使用案例请参考以下文档: - [图像分类Android使用文档](../../../examples/vision/classification/paddleclas/android/README.md) - [目标检测Android使用文档](../../../examples/vision/detection/paddledetection/android/README.md)