// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/pybind/main.h" namespace fastdeploy { void BindYOLOv5(pybind11::module& m) { pybind11::class_(m, "YOLOv5Preprocessor") .def(pybind11::init<>()) .def( "run", [](vision::detection::YOLOv5Preprocessor& self, std::vector& im_list) { std::vector images; for (size_t i = 0; i < im_list.size(); ++i) { images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i]))); } std::vector outputs; std::vector>> ims_info; if (!self.Run(&images, &outputs, &ims_info)) { throw std::runtime_error( "Failed to preprocess the input data in YOLOv5Preprocessor."); } for (size_t i = 0; i < outputs.size(); ++i) { outputs[i].StopSharing(); } return make_pair(outputs, ims_info); }) .def_property("size", &vision::detection::YOLOv5Preprocessor::GetSize, &vision::detection::YOLOv5Preprocessor::SetSize) .def_property("padding_value", &vision::detection::YOLOv5Preprocessor::GetPaddingValue, &vision::detection::YOLOv5Preprocessor::SetPaddingValue) .def_property("is_scale_up", &vision::detection::YOLOv5Preprocessor::GetScaleUp, &vision::detection::YOLOv5Preprocessor::SetScaleUp) .def_property("is_mini_pad", &vision::detection::YOLOv5Preprocessor::GetMiniPad, &vision::detection::YOLOv5Preprocessor::SetMiniPad) .def_property("stride", &vision::detection::YOLOv5Preprocessor::GetStride, &vision::detection::YOLOv5Preprocessor::SetStride); pybind11::class_( m, "YOLOv5Postprocessor") .def(pybind11::init<>()) .def("run", [](vision::detection::YOLOv5Postprocessor& self, std::vector& inputs, const std::vector>>& ims_info) { std::vector results; if (!self.Run(inputs, &results, ims_info)) { throw std::runtime_error( "Failed to postprocess the runtime result in " "YOLOv5Postprocessor."); } return results; }) .def("run", [](vision::detection::YOLOv5Postprocessor& self, std::vector& input_array, const std::vector>>& ims_info) { std::vector results; std::vector inputs; PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true); if (!self.Run(inputs, &results, ims_info)) { throw std::runtime_error( "Failed to postprocess the runtime result in " "YOLOv5Postprocessor."); } return results; }) .def_property("conf_threshold", &vision::detection::YOLOv5Postprocessor::GetConfThreshold, &vision::detection::YOLOv5Postprocessor::SetConfThreshold) .def_property("nms_threshold", &vision::detection::YOLOv5Postprocessor::GetNMSThreshold, &vision::detection::YOLOv5Postprocessor::SetNMSThreshold) .def_property("multi_label", &vision::detection::YOLOv5Postprocessor::GetMultiLabel, &vision::detection::YOLOv5Postprocessor::SetMultiLabel); pybind11::class_(m, "YOLOv5") .def(pybind11::init()) .def("predict", [](vision::detection::YOLOv5& self, pybind11::array& data) { auto mat = PyArrayToCvMat(data); vision::DetectionResult res; self.Predict(mat, &res); return res; }) .def("batch_predict", [](vision::detection::YOLOv5& self, std::vector& data) { std::vector images; for (size_t i = 0; i < data.size(); ++i) { images.push_back(PyArrayToCvMat(data[i])); } std::vector results; self.BatchPredict(images, &results); return results; }) .def_property_readonly("preprocessor", &vision::detection::YOLOv5::GetPreprocessor) .def_property_readonly("postprocessor", &vision::detection::YOLOv5::GetPostprocessor); } } // namespace fastdeploy