""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from abc import abstractmethod from collections.abc import Sequence from functools import cached_property from typing import Callable, Optional, Union from fastdeploy.entrypoints.openai.protocol import ChatCompletionRequest, DeltaMessage from fastdeploy.utils import is_list_of class ReasoningParser: """ Abstract reasoning parser class that should not be used directly. Provided and methods should be used in derived classes. It is used to extract reasoning content from the model output. """ def __init__(self, tokenizer): self.model_tokenizer = tokenizer @cached_property def vocab(self) -> dict[str, int]: """ Get the vocabulary of the model tokenizer. """ return self.model_tokenizer.get_vocab() @abstractmethod def is_reasoning_end(self, input_ids: Sequence[int]) -> bool: """ Check if the reasoning content ends in the input_ids. It is used in structured engines like `xgrammar` to check if the reasoning content ends in the model output. Parameters: input_ids: list[int] The input_ids of the model output. Returns: bool True if the reasoning content ends in the input_ids. """ @abstractmethod def extract_content_ids(self, input_ids: list[int]) -> list[int]: """ Extract content token ids from the input_ids. Parameters: input_ids: list[int] The input_ids of the model output. Returns: list[int] The extracted content from the input_ids. """ @abstractmethod def extract_reasoning_content( self, model_output: str, request: ChatCompletionRequest ) -> tuple[Optional[str], Optional[str]]: """ Extract reasoning content from a complete model-generated string. Used for non-streaming responses where we have the entire model response available before sending to the client. Parameters: model_output: str The model-generated string to extract reasoning content from. request: ChatCompletionRequest The request object that was used to generate the model_output. Returns: tuple[Optional[str], Optional[str]] A tuple containing the reasoning content and the content. """ @abstractmethod def extract_reasoning_content_streaming( self, previous_text: str, current_text: str, delta_text: str, previous_token_ids: Sequence[int], current_token_ids: Sequence[int], delta_token_ids: Sequence[int], ) -> Union[DeltaMessage, None]: """ Instance method that should be implemented for extracting reasoning from an incomplete response; for use when handling reasoning calls and streaming. Has to be an instance method because it requires state - the current tokens/diffs, but also the information about what has previously been parsed and extracted (see constructor) """ class ReasoningParserManager: """ ReasoningParserManager """ reasoning_parsers: dict[str, type] = {} @classmethod def get_reasoning_parser(cls, name: Optional[str]) -> type[ReasoningParser]: """ Get reasoning parser by name which is registered by `register_module`. Raise a KeyError exception if the name is not registered. """ if name in cls.reasoning_parsers: return cls.reasoning_parsers[name] raise KeyError(f"reasoning helper: '{name}' not found in reasoning_parsers") @classmethod def _register_module( cls, module: type, module_name: Optional[Union[str, list[str]]] = None, force: bool = True, ) -> None: if not issubclass(module, ReasoningParser): raise TypeError("module must be subclass of ReasoningParser, " f"but got {type(module)}") if module_name is None: module_name = module.__name__ if isinstance(module_name, str): module_name = [module_name] for name in module_name: if not force and name in cls.reasoning_parsers: existed_module = cls.reasoning_parsers[name] raise KeyError(f"{name} is already registered " f"at {existed_module.__module__}") cls.reasoning_parsers[name] = module @classmethod def register_module( cls, name: Optional[Union[str, list[str]]] = None, force: bool = True, module: Union[type, None] = None, ) -> Union[type, Callable]: """ Register module with the given name or name list. it can be used as a decoder(with module as None) or normal function(with module as not None). """ if not isinstance(force, bool): raise TypeError(f"force must be a boolean, but got {type(force)}") # raise the error ahead of time if not (name is None or isinstance(name, str) or is_list_of(name, str)): raise TypeError("name must be None, an instance of str, or a sequence of str, " f"but got {type(name)}") # use it as a normal method: x.register_module(module=SomeClass) if module is not None: cls._register_module(module=module, module_name=name, force=force) return module # use it as a decorator: @x.register_module() def _register(module): cls._register_module(module=module, module_name=name, force=force) return module return _register