# Running ERNIE 4.5 Series Models with FastDeploy The Enflame S60 ([Learn about Enflame](https://www.enflame-tech.com/)) is a next-generation AI inference accelerator card designed for large-scale deployment in data centers. It meets the demands of large language models (LLMs), search/advertising/recommendation systems, and traditional models. Characterized by broad model coverage, user-friendliness, and high portability, it is widely applicable to mainstream inference scenarios such as image and text generation applications, search and recommendation systems, and text/image/speech recognition. FastDeploy has deeply adapted and optimized the ERNIE 4.5 Series Models for the Enflame S60, achieving a unified inference interface between GCU and GPU. This allows seamless migration of inference tasks without code modifications. ## 🚀 Quick Start 🚀 ### 0. Machine Preparation Before starting, prepare a machine equipped with Enflame S60 accelerator cards. Requirements: | Chip Type | Driver Version | TopsRider Version | | :---: | :---: | :---: | | Enflame S60 | 1.5.0.5 | 3.4.623 | **Note: To verify if your machine has Enflame S60 accelerator cards installed, run the following command in the host environment and check for output:** ```bash lspci | grep S60 # Example: lspci | grep S60, Example Output: 08:00.0 Processing accelerators: Shanghai Enflame Technology Co. Ltd S60 [Enflame] (rev 01) 09:00.0 Processing accelerators: Shanghai Enflame Technology Co. Ltd S60 [Enflame] (rev 01) 0e:00.0 Processing accelerators: Shanghai Enflame Technology Co. Ltd S60 [Enflame] (rev 01) 11:00.0 Processing accelerators: Shanghai Enflame Technology Co. Ltd S60 [Enflame] (rev 01) 32:00.0 Processing accelerators: Shanghai Enflame Technology Co. Ltd S60 [Enflame] (rev 01) 38:00.0 Processing accelerators: Shanghai Enflame Technology Co. Ltd S60 [Enflame] (rev 01) 3b:00.0 Processing accelerators: Shanghai Enflame Technology Co. Ltd S60 [Enflame] (rev 01) 3c:00.0 Processing accelerators: Shanghai Enflame Technology Co. Ltd S60 [Enflame] (rev 01) ``` ### 1. Environment Setup (Estimated time: 5-10 minutes) 1. Pull the Docker image ```bash # Note: This image only contains the Paddle development environment, not precompiled PaddlePaddle packages docker pull ccr-2vdh3abv-pub.cnc.bj.baidubce.com/device/paddle-gcu:topsrider3.5.102-ubuntu20-x86_64-gcc84 ``` 2. Start the container ```bash docker run --name paddle-gcu-llm -v /home:/home -v /work:/work --network=host --ipc=host -it --privileged ccr-2vdh3abv-pub.cnc.bj.baidubce.com/device/paddle-gcu:topsrider3.5.102-ubuntu20-x86_64-gcc84 /bin/bash ``` 3. Obtain and install drivers
**Full software packages are preloaded in the Docker container. Copy them to an external directory, e.g., ```/home/workspace/deps/```** ```bash mkdir -p /home/workspace/deps/ && cp /root/TopsRider_i3x_*/TopsRider_i3x_*_deb_amd64.run /home/workspace/deps/ ``` 4. Install drivers
**Execute this operation in the host environment** ```bash cd /home/workspace/deps/ bash TopsRider_i3x_*_deb_amd64.run --driver --no-auto-load -y ``` After driver installation, **re-enter the Docker container**: ```bash docker start paddle-gcu-llm docker exec -it paddle-gcu-llm bash ``` 5. Install PaddlePaddle & PaddleCustomDevice
```bash # PaddlePaddle Deep Learning Framework provides fundamental computing capabilities python -m pip install paddlepaddle==3.1.1 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/ # PaddleCustomDevice implements custom hardware backend for PaddlePaddle, providing GCU operator implementations python -m pip install paddle-custom-gcu==3.1.1 -i https://www.paddlepaddle.org.cn/packages/stable/gcu/ # For source compilation, refer to: https://github.com/PaddlePaddle/PaddleCustomDevice/blob/develop/backends/gcu/README_cn.md ``` For latest paddle version on iluvatar. Refer to [PaddlePaddle Installation](https://www.paddlepaddle.org.cn/) 6. Install FastDeploy and dependencies ```bash python -m pip install fastdeploy -i https://www.paddlepaddle.org.cn/packages/stable/gcu/ --extra-index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simplels ``` You can build FastDeploy from source if you need the ```latest version```. ```bash git clone https://github.com/PaddlePaddle/FastDeploy cd FastDeploy python -m pip install -r requirements.txt --extra-index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simplels bash build.sh 1 ``` ### 2. Data Preparation (Estimated time: 2-5 minutes) Use a trained model for inference on GSM8K dataset: ```bash mkdir -p /home/workspace/benchmark/ && cd /home/workspace/benchmark/ wget https://raw.githubusercontent.com/openai/grade-school-math/master/grade_school_math/data/test.jsonl ``` Place model weights in a directory, e.g., ```/work/models/ERNIE-4.5-300B-A47B-Paddle/``` ### 3. Inference (Estimated time: 2-5 minutes) Start the inference service: ```bash python -m fastdeploy.entrypoints.openai.api_server \ --model "/work/models/ERNIE-4.5-300B-A47B-Paddle/" \ --port 8188 \ --metrics-port 8200 \ --tensor-parallel-size 8 \ --max-model-len 32768 \ --num-gpu-blocks-override 4096 \ --max-num-batched-tokens 32768 \ --quantization "wint4" ``` Query the model service: ```bash curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \ -H "Content-Type: application/json" \ -d '{ "messages": [ {"role": "user", "content": "Where is Beijing?"} ] }' ``` Successful execution returns inference results, e.g.: ```json {"id":"chatcmpl-20f1210d-6943-4110-ad2d-c76ba11604ad","object":"chat.completion","created":1751621261,"model":"default","choices":[{"index":0,"message":{"role":"assistant","content":"Beijing is the capital city of the People's Republic of China, located in the northern part of the country. It is situated in the North China Plain, bordered by the mountains to the west, north, and northeast. Beijing serves as China's political, cultural, and international exchange center, playing a crucial role in the nation's development and global interactions.","reasoning_content":null,"tool_calls":null},"finish_reason":"stop"}],"usage":{"prompt_tokens":11,"total_tokens":88,"completion_tokens":77,"prompt_tokens_details":{"cached_tokens":0}}} ``` ### 4. Accuracy Testing (Estimated time: 60–180 minutes) Place the accuracy script ```bench_gsm8k.py``` in ```/home/workspace/benchmark/``` and modify sampling parameters, e.g.: ```bash data = { "messages": [ { "role": "user", "content": prompt, } ], "temperature": 0.6, "max_tokens": 2047, "top_p": 0.95, "do_sample": True, } ``` Run accuracy tests: ```bash cd /home/workspace/benchmark/ python -u bench_gsm8k.py --port 8188 --num-questions 1319 --num-shots 5 --parallel 8 ``` Upon completion, accuracy results are saved in ```result.jsonl```, e.g.: ```json {"task": "gsm8k", "backend": "paddlepaddle", "num_gpus": 1, "latency": 13446.01, "accuracy": 0.956, "num_requests": 1319, "other": {"num_questions": 1319, "parallel": 8}} ```