""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import unittest from unittest.mock import patch import numpy as np import paddle from fastdeploy.platforms.utils import convert_to_npu_dequant_scale class TestConvertToNpuDequantScale(unittest.TestCase): def test_npu_not_available(self): with patch("paddle.is_compiled_with_custom_device", return_value=False): x = paddle.to_tensor([1.0, 2.0, 3.0], dtype=paddle.float32) out = convert_to_npu_dequant_scale(x) self.assertTrue((out.numpy() == x.numpy()).all()) def test_npu_available(self): with patch("paddle.is_compiled_with_custom_device", return_value=True): x = paddle.to_tensor([1, 2, 3], dtype=paddle.float32) out = convert_to_npu_dequant_scale(x) self.assertEqual(out.dtype, paddle.int64) # Verify scaled output matches expected NPU dequantization format arr = x.numpy() new_deq_scale = np.stack([arr.reshape(-1, 1), np.zeros_like(arr).reshape(-1, 1)], axis=-1).reshape(-1) expected = np.frombuffer(new_deq_scale.tobytes(), dtype=np.int64) self.assertTrue((out.numpy() == expected).all()) if __name__ == "__main__": unittest.main()