# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from paddleformers.trl.llm_utils import init_dist_env from fastdeploy.rl.rollout_config import RolloutModelConfig from fastdeploy.rl.rollout_model import RolloutModel _, ranks = init_dist_env() parser = argparse.ArgumentParser() parser.add_argument("--model_path", type=str, required=True, help="Path to the model directory") parser.add_argument("--baseline_path", type=str, required=True, help="Path to the baseline path") parser.add_argument("--quantization", type=str, default=None, help="Quantization") parser.add_argument("--enable_mm", action="store_true", required=False, help="Flags to enable multi-modal model") args = parser.parse_args() # base result model_path = args.model_path # Usage example: init_kwargs = { "model_name_or_path": model_path, "max_model_len": 32768, "tensor_parallel_size": ranks, "dynamic_load_weight": True, "load_strategy": "ipc_snapshot", "quantization": args.quantization, } if args.enable_mm: init_kwargs["enable_mm"] = True rollout_config = RolloutModelConfig(**init_kwargs) actor_eval_model = RolloutModel(rollout_config) content = "".join( sorted( [f"{k}\n" for k, v in actor_eval_model.state_dict().items()] + [f"{k}:{v}\n" for k, v in actor_eval_model.get_name_mappings_to_training().items()] ) ) def compare_strings_line_by_line(a: str, b: str) -> bool: """ Compare two multiline strings line by line. Returns: True if all lines match exactly in order and content. False if any line differs or the number of lines is not equal. """ a_lines = a.splitlines() b_lines = b.splitlines() if len(a_lines) != len(b_lines): print(f"❌ Mismatch in number of lines: expected {len(a_lines)}, but got {len(b_lines)}.") return False for i, (line_a, line_b) in enumerate(zip(a_lines, b_lines)): if line_a != line_b: print(f"❌ Difference found on line {i + 1}:") print(f" Expected: {repr(line_a)}") print(f" Actual : {repr(line_b)}") return False print("✅ All lines match exactly.") return True with open(args.baseline_path, "r", encoding="utf-8") as f: baseline = f.read() assert compare_strings_line_by_line(baseline, content), ( "In the unittest of RL scenario, your modification " "caused inconsistency in the content before and after. Please fix it. " "Can request assistance from yuanlehome or gzy19990617 (github id)." )