# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle from fastdeploy.model_executor.ops.gpu import w4afp8_gemm, w4afp8_gemm_weight_convert class TestW4AFP8GEMM(unittest.TestCase): def setUp(self): paddle.seed(0) self.tokens_per_group = 256 self.N = 256 self.K = 256 self.BATCH = 1 self.TokenPadding = 0 tokens = [self.tokens_per_group] * self.BATCH self.tokens_prefix_sum = np.cumsum(tokens) self.tokens = paddle.to_tensor(tokens, dtype="int64") self.tokens_prefix_sum = paddle.to_tensor(self.tokens_prefix_sum, dtype="int64") self.all_tokens = int(self.tokens.sum()) self.input_fp8 = paddle.randn([self.all_tokens, self.K], dtype="bfloat16").astype(paddle.float8_e4m3fn) self.input_bf16 = self.input_fp8.astype("bfloat16") self.weight = paddle.randn([self.BATCH, self.N, self.K], dtype="bfloat16") / 10 self.weight_scale = 7 / self.weight.abs().max(axis=-1).reshape([self.BATCH, self.N, 1]) self.weight_quant = (self.weight * self.weight_scale).astype("int") + 7 self.weight_quant = paddle.clip(self.weight_quant, 0, 14) self.weight_quant = self.weight_quant.astype("bfloat16") self.weight_dequant_scale = 1 / self.weight_scale.astype("float32") self.input_row_sum = self.input_bf16.sum(axis=1) * -7 / 512 self.max_tokens = int(self.tokens.max()) def w4afp8_gemm_naive(self, input_bf16, weight_quant, tokens, weight_dequant_scale): all_tokens = int(tokens.sum()) out = paddle.zeros([all_tokens, self.N], dtype="bfloat16") pre_fix_token = 0 for i in range(self.BATCH): input = input_bf16[pre_fix_token : pre_fix_token + tokens[i], :] weight = (weight_quant[i] - 7.0) * weight_dequant_scale[i] out_i = paddle.matmul(input, weight.astype("bfloat16"), transpose_y=True) out[pre_fix_token : pre_fix_token + tokens[i], :] = out_i pre_fix_token += tokens[i] return out def permute_scale(self, weight_scale): weight_scale = weight_scale.reshape([self.BATCH, self.N]) temp = paddle.zeros([16]) for b in range(self.BATCH): for n in range(0, self.N, 16): temp[:] = weight_scale[b, n : n + 16] for j in range(0, 16, 2): weight_scale[b, n + j] = temp[j // 2] weight_scale[b, n + j + 1] = temp[j // 2 + 8] return weight_scale def test_w4afp8_gemm(self): out_naive = self.w4afp8_gemm_naive(self.input_bf16, self.weight_quant, self.tokens, self.weight_dequant_scale) weight_dequant_scale = paddle.to_tensor(self.permute_scale(self.weight_dequant_scale) * 512) weight_int4 = w4afp8_gemm_weight_convert(self.weight_quant.astype("uint8").cpu()) if self.TokenPadding == 0: out_cuda = w4afp8_gemm( self.input_fp8, weight_int4.cuda(), self.tokens_prefix_sum, self.input_row_sum.astype("float32"), weight_dequant_scale.astype("float32"), int(self.TokenPadding), self.max_tokens, True, ) else: out_cuda = w4afp8_gemm( self.input_fp8, weight_int4.cuda(), self.tokens, self.input_row_sum.astype("float32"), weight_dequant_scale.astype("float32"), int(self.TokenPadding), self.max_tokens, True, ) gap = (out_cuda - out_naive).abs() self.assertLess(float(gap.mean()), 0.07) if __name__ == "__main__": unittest.main()