""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import unittest import paddle from fastdeploy.config import ( CacheConfig, FDConfig, GraphOptimizationConfig, ParallelConfig, ) from fastdeploy.model_executor.forward_meta import ForwardMeta from fastdeploy.model_executor.graph_optimization.decorator import ( support_graph_optimization, ) @support_graph_optimization class TestCase1SubLayer1(paddle.nn.Layer): """Sub layer 1 of test case 1""" def __init__(self, fd_config: FDConfig, **kwargs): super().__init__() def forward(self, ids_remove_padding, forward_meta: ForwardMeta): """Sub layer1 forward pass""" output = paddle.add(forward_meta.input_ids, forward_meta.input_ids) return output def forward_correct(self, ids_remove_padding, forward_meta: ForwardMeta): """Sub layer1 Correct forward pass""" output = paddle.add(forward_meta.input_ids, forward_meta.input_ids) return output class TestCase1SubLayer2(paddle.nn.Layer): """ """ def __init__(self, fd_config: FDConfig, **kwargs): super().__init__() def forward(self, ids_remove_padding, forward_meta: ForwardMeta): """Sub layer2 forward pass""" x = forward_meta.input_ids y = forward_meta.input_ids output = x + y return output def forward_correct(self, ids_remove_padding, forward_meta: ForwardMeta): """Sub layer2 Correct forward pass""" x = forward_meta.input_ids y = forward_meta.input_ids output = x + y return output @support_graph_optimization class TestCase1SubLayer3(paddle.nn.Layer): """ """ def __init__(self, fd_config: FDConfig, **kwargs): super().__init__() def forward(self, ids_remove_padding, forward_meta: ForwardMeta): """Sub layer3 forward pass""" output = paddle.matmul(forward_meta.input_ids, forward_meta.input_ids) return output def forward_correct(self, ids_remove_padding, forward_meta: ForwardMeta): """Sub layer3 Correct forward pass""" output = paddle.matmul(forward_meta.input_ids, forward_meta.input_ids) return output class TestModel1(paddle.nn.Layer): """Tast Model""" def __init__(self, fd_config: FDConfig, **kwargs): super().__init__() self.fd_config = fd_config self.sublayer1 = TestCase1SubLayer1(self.fd_config) self.sublayer2 = TestCase1SubLayer2(self.fd_config) # Attention self.sublayer3 = TestCase1SubLayer3(self.fd_config) self.sublayer2_output_buffer = paddle.zeros([1]) def forward(self, ids_remove_padding, forward_meta: ForwardMeta): """Test model for ward pass""" # sublayer1 use cuda graph sub_meta1 = forward_meta sublayer1_output = self.sublayer1(ids_remove_padding=ids_remove_padding, forward_meta=sub_meta1) # sublayer2 not use cuda garph sub_meta2 = ForwardMeta(input_ids=sublayer1_output, ids_remove_padding=sublayer1_output) sublayer2_output = self.sublayer2(ids_remove_padding=sublayer1_output, forward_meta=sub_meta2) self.sublayer2_output_buffer.copy_(sublayer2_output, False) # sublayer3 use cuda graph sub_meta3 = ForwardMeta( input_ids=self.sublayer2_output_buffer, ids_remove_padding=self.sublayer2_output_buffer, step_use_cudagraph=True, ) sublayer3_output = self.sublayer3(ids_remove_padding=self.sublayer2_output_buffer, forward_meta=sub_meta3) return sublayer3_output def forward_correct(self, ids_remove_padding, forward_meta: ForwardMeta): """Test model for ward pass""" # sublayer1 not use cuda graph sub_meta1 = forward_meta sublayer1_output = self.sublayer1.forward_correct( ids_remove_padding=ids_remove_padding, forward_meta=sub_meta1 ) # sublayer2 not use cuda garph sub_meta2 = ForwardMeta(input_ids=sublayer1_output, ids_remove_padding=sublayer1_output) sublayer2_output = self.sublayer2.forward_correct(ids_remove_padding=sublayer1_output, forward_meta=sub_meta2) # sublayer3 not use cuda graph sub_meta3 = ForwardMeta(input_ids=sublayer2_output, ids_remove_padding=sublayer2_output) sublayer3_output = self.sublayer3.forward_correct(ids_remove_padding=sublayer2_output, forward_meta=sub_meta3) return sublayer3_output class TestCUDAGrpahSubgraph(unittest.TestCase): """ Test CUDAGraph Memory change """ def test_cuda_graph_subgraph(self): """Run test case""" # Set FastDeploy config graph_opt_config = GraphOptimizationConfig(args={}) graph_opt_config.use_cudagraph = True parallel_config = ParallelConfig(args={}) parallel_config.max_num_seqs = 8 cache_config = CacheConfig({}) # Initialize cuda graph capture list graph_opt_config._set_cudagraph_sizes(max_num_seqs=parallel_config.max_num_seqs) graph_opt_config.init_with_cudagrpah_size(max_num_seqs=parallel_config.max_num_seqs) fd_config = FDConfig( graph_opt_config=graph_opt_config, parallel_config=parallel_config, cache_config=cache_config, test_mode=True, ) # Run Test Case1 test_model1 = TestModel1(fd_config=fd_config) input_tensor1 = paddle.ones([8]) forward_meta1 = ForwardMeta(input_ids=input_tensor1, ids_remove_padding=input_tensor1, step_use_cudagraph=True) # Triger Capture _ = test_model1(ids_remove_padding=input_tensor1, forward_meta=forward_meta1) # Reaplay _ = test_model1(ids_remove_padding=input_tensor1, forward_meta=forward_meta1) output1 = test_model1(ids_remove_padding=input_tensor1, forward_meta=forward_meta1) # Corrent output output1_correct = test_model1.forward_correct(ids_remove_padding=input_tensor1, forward_meta=forward_meta1) assert (output1 == output1_correct).all() if __name__ == "__main__": unittest.main()