English | [简体中文](README_CN.md) # SCRFD Python Deployment Example Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) - 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) This directory provides examples that `infer.py` fast finishes the deployment of SCRFD on CPU/GPU and GPU accelerated by TensorRT. The script is as follows ```bash # Download the example code for deployment git clone https://github.com/PaddlePaddle/FastDeploy.git cd examples/vision/facedet/scrfd/python/ # Download SCRFD model files and test images wget https://bj.bcebos.com/paddlehub/fastdeploy/scrfd_500m_bnkps_shape640x640.onnx wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg # CPU inference python infer.py --model scrfd_500m_bnkps_shape640x640.onnx --image test_lite_face_detector_3.jpg --device cpu # GPU inference python infer.py --model scrfd_500m_bnkps_shape640x640.onnx --image test_lite_face_detector_3.jpg --device gpu # TensorRT inference on GPU python infer.py --model scrfd_500m_bnkps_shape640x640.onnx --image test_lite_face_detector_3.jpg --device gpu --use_trt True ``` The visualized result after running is as follows ## SCRFD Python Interface ```python fastdeploy.vision.facedet.SCRFD(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX) ``` SCRFD model loading and initialization, among which model_file is the exported ONNX model format **Parameter** > * **model_file**(str): Model file path > * **params_file**(str): Parameter file path. No need to set when the model is in ONNX format > * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration > * **model_format**(ModelFormat): Model format. ONNX format by default ### predict function > ```python > SCRFD.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5) > ``` > > Model prediction interface. Input images and output detection results. > > **Parameter** > > > * **image_data**(np.ndarray): Input data in HWC or BGR format > > * **conf_threshold**(float): Filtering threshold of detection box confidence > > * **nms_iou_threshold**(float): iou threshold during NMS processing > **Return** > > > Return `fastdeploy.vision.FaceDetectionResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for its description. ### Class Member Property #### Pre-processing Parameter Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results > > * **size**(list[int]): This parameter changes the size of the resize used during preprocessing, containing two integer elements for [width, height] with default value [640, 640] > > * **padding_value**(list[float]): This parameter is used to change the padding value of images during resize, containing three floating-point elements that represent the value of three channels. Default value [114, 114, 114] > > * **is_no_pad**(bool): Specify whether to resize the image through padding or not. `is_no_pad=True` represents no paddling. Default `is_no_pad=False` > > * **is_mini_pad**(bool): This parameter sets the width and height of the image after resize to the value nearest to the `size` member variable and to the point where the padded pixel size is divisible by the `stride` member variable. Default `is_mini_pad=False` > > * **stride**(int): Used with the `stris_mini_padide` member variable. Default`stride=32` > > * **downsample_strides**(list[int]): This parameter is used to change the down-sampling multiple of the feature map that generates anchor, containing three integer elements that represent the default down-sampling multiple for generating anchor. Default [8, 16, 32] > > * **landmarks_per_face**(int): Modify the number of face keypoints if we use an output with face keypoints. Default `landmarks_per_face=5` > > * **use_kps**(bool): Whether to use keypoints or not. If the ONNX file has no keypoint output, set `use_kps=False` and `landmarks_per_face=0`. Default `use_kps=True` > > * **num_anchors**(int): Set the number predicted by each anchor. The parameters of the trained model need modification accordingly. Default `num_anchors=2` ## Other Documents - [SCRFD Model Description](..) - [SCRFD C++ Deployment](../cpp) - [Model Prediction Results](../../../../../docs/api/vision_results/) - [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)