English | [简体中文](README_CN.md) # PaddleDetection C++ Deployment Example This directory provides examples that `infer_xxx.cc` fast finishes the deployment of PaddleDetection models, including PPYOLOE/PicoDet/YOLOX/YOLOv3/PPYOLO/FasterRCNN/YOLOv5/YOLOv6/YOLOv7/RTMDet on CPU/GPU and GPU accelerated by TensorRT. Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) - 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) Taking inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model. ```bash ppyoloe is taken as an example for inference deployment mkdir build cd build # Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz tar xvf fastdeploy-linux-x64-x.x.x.tgz cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # Download the PPYOLOE model file and test images wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg tar xvf ppyoloe_crn_l_300e_coco.tgz # CPU inference ./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 0 # GPU inference ./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 1 # TensorRT Inference on GPU ./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 2 # Kunlunxin XPU Inference ./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 3 # Huawei Ascend Inference ./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 4 ``` The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to: - [How to use FastDeploy C++ SDK in Windows](../../../../../docs/en/faq/use_sdk_on_windows.md) ## PaddleDetection C++ Interface ### Model Class PaddleDetection currently supports 6 kinds of models, including `PPYOLOE`, `PicoDet`, `PaddleYOLOX`, `PPYOLO`, `FasterRCNN`,`SSD`,`PaddleYOLOv5`,`PaddleYOLOv6`,`PaddleYOLOv7`,`RTMDet`. The constructors and predictors for all 6 kinds are consistent in terms of parameters. This document takes PPYOLOE as an example to introduce its API ```c++ fastdeploy::vision::detection::PPYOLOE( const string& model_file, const string& params_file, const string& config_file const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE) ``` Loading and initializing PaddleDetection PPYOLOE model, where the format of model_file is as the exported ONNX model. **Parameter** > * **model_file**(str): Model file path > * **params_file**(str): Parameter file path > * **config_file**(str): • Configuration file path, which is the deployment yaml file exported by PaddleDetection > * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration > * **model_format**(ModelFormat): Model format. Paddle format by default #### Predict Function > ```c++ > PPYOLOE::Predict(cv::Mat* im, DetectionResult* result) > ``` > > Model prediction interface. Input images and output results directly. > > **Parameter** > > > * **im**: Input images in HWC or BGR format > > * **result**: Detection result, including detection box and confidence of each box. Refer to [Vision Model Prediction Result](../../../../../docs/api/vision_results/) for DetectionResult - [Model Description](../../) - [Python Deployment](../python) - [Vision Model prediction results](../../../../../docs/api/vision_results/) - [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)