# Benchmark FastDeploy基于[vLLM benchmark](https://github.com/vllm-project/vllm/blob/main/benchmarks/)脚本,增加了部分统计信息,可用于benchmark FastDeploy更详细的性能指标。 ## 测试数据集 以下数据集来源于开源数据集(源数据来源于[HuggingFace Datasets](https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json)) | 数据集 | 说明 | | :----------------------------------------------------------- | :--------- | | https://fastdeploy.bj.bcebos.com/eb_query/filtered_sharedgpt_2000_input_1136_output_200_fd.json | 开源数据集 | ## 测试方式 ``` cd FastDeploy/benchmarks python -m pip install -r requirements.txt # 启动服务 python -m fastdeploy.entrypoints.openai.api_server \ --model baidu/ERNIE-4.5-0.3B-Base-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 8192 # 压测服务 python benchmark_serving.py \ --backend openai-chat \ --model baidu/ERNIE-4.5-0.3B-Base-Paddle \ --endpoint /v1/chat/completions \ --host 0.0.0.0 \ --port 8188 \ --dataset-name EBChat \ --dataset-path ./filtered_sharedgpt_2000_input_1136_output_200_fd.json \ --percentile-metrics ttft,tpot,itl,e2el,s_ttft,s_itl,s_e2el,s_decode,input_len,s_input_len,output_len \ --metric-percentiles 80,95,99,99.9,99.95,99.99 \ --num-prompts 1 \ --max-concurrency 1 \ --save-result ```