# Offline Inference ## 1. Usage FastDeploy supports offline inference by loading models locally and processing user data. Usage examples: ### Chat Interface (LLM.chat) ```python from fastdeploy import LLM, SamplingParams msg1=[ {"role": "system", "content": "I'm a helpful AI assistant."}, {"role": "user", "content": "把李白的静夜思改写为现代诗"}, ] msg2 = [ {"role": "system", "content": "I'm a helpful AI assistant."}, {"role": "user", "content": "Write me a poem about large language model."}, ] messages = [msg1, msg2] # Sampling parameters sampling_params = SamplingParams(top_p=0.95, max_tokens=6400) # Load model llm = LLM(model="ERNIE-4.5-0.3B", tensor_parallel_size=1, max_model_len=8192) # Batch inference (internal request queuing and dynamic batching) outputs = llm.chat(messages, sampling_params) # Output results for output in outputs: prompt = output.prompt generated_text = output.outputs.text ``` Documentation for `SamplingParams`, `LLM.generate`, `LLM.chat`, and output structure `RequestOutput` is provided below. > Note: For reasoning models, when loading the model, you need to specify the reasoning_parser parameter. Additionally, during the request, you can toggle the reasoning feature on or off by configuring the `enable_thinking` parameter within `chat_template_kwargs`. ```python from fastdeploy.entrypoints.llm import LLM # 加载模型 llm = LLM(model="baidu/ERNIE-4.5-VL-28B-A3B-Paddle", tensor_parallel_size=1, max_model_len=32768, limit_mm_per_prompt={"image": 100}, reasoning_parser="ernie-45-vl") outputs = llm.chat( messages=[ {"role": "user", "content": [ {"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}}, {"type": "text", "text": "图中的文物属于哪个年代"}]} ], chat_template_kwargs={"enable_thinking": False}) # 输出结果 for output in outputs: prompt = output.prompt generated_text = output.outputs.text reasoning_text = output.outputs.reasoning_content ``` ### Text Completion Interface (LLM.generate) ```python from fastdeploy import LLM, SamplingParams prompts = [ "User: 帮我写一篇关于深圳文心公园的500字游记和赏析。\nAssistant: 好的。" ] # 采样参数 sampling_params = SamplingParams(top_p=0.95, max_tokens=6400) # 加载模型 llm = LLM(model="baidu/ERNIE-4.5-21B-A3B-Base-Paddle", tensor_parallel_size=1, max_model_len=8192) # 批量进行推理(llm内部基于资源情况进行请求排队、动态插入处理) outputs = llm.generate(prompts, sampling_params) # 输出结果 for output in outputs: prompt = output.prompt generated_text = output.outputs.text ``` > Note: Text completion interface, suitable for scenarios where users have predefined the context input and expect the model to output only the continuation content. No additional `prompt` concatenation will be added during the inference process. > For the `chat` model, it is recommended to use the Chat Interface (`LLM.chat`). For multimodal models, such as `baidu/ERNIE-4.5-VL-28B-A3B-Paddle`, when calling the `generate interface`, you need to provide a prompt that includes images. The usage is as follows: ```python import io import requests from PIL import Image from fastdeploy.entrypoints.llm import LLM from fastdeploy.engine.sampling_params import SamplingParams from fastdeploy.input.ernie4_5_tokenizer import Ernie4_5Tokenizer PATH = "baidu/ERNIE-4.5-VL-28B-A3B-Paddle" tokenizer = Ernie4_5Tokenizer.from_pretrained(PATH) messages = [ { "role": "user", "content": [ {"type":"image_url", "image_url": {"url":"https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}}, {"type":"text", "text":"图中的文物属于哪个年代"} ] } ] prompt = tokenizer.apply_chat_template(messages, tokenize=False) images, videos = [], [] for message in messages: content = message["content"] if not isinstance(content, list): continue for part in content: if part["type"] == "image_url": url = part["image_url"]["url"] image_bytes = requests.get(url).content img = Image.open(io.BytesIO(image_bytes)) images.append(img) elif part["type"] == "video_url": url = part["video_url"]["url"] video_bytes = requests.get(url).content videos.append({ "video": video_bytes, "max_frames": 30 }) sampling_params = SamplingParams(temperature=0.1, max_tokens=6400) llm = LLM(model=PATH, tensor_parallel_size=1, max_model_len=32768, limit_mm_per_prompt={"image": 100}, reasoning_parser="ernie-45-vl") outputs = llm.generate(prompts={ "prompt": prompt, "multimodal_data": { "image": images, "video": videos } }, sampling_params=sampling_params) # 输出结果 for output in outputs: prompt = output.prompt generated_text = output.outputs.text reasoning_text = output.outputs.reasoning_content ``` > Note: The `generate interface` does not currently support passing parameters to control the thinking function (on/off). It always uses the model's default parameters. ## 2. API Documentation ### 2.1 fastdeploy.LLM For ``LLM`` configuration, refer to [Parameter Documentation](parameters.md). > Configuration Notes: > > 1. `port` and `metrics_port` is only used for online inference. > 2. After startup, the service logs KV Cache block count (e.g. `total_block_num:640`). Multiply this by block_size (default 64) to get total cacheable tokens. > 3. Calculate `max_num_seqs` based on cacheable tokens. Example: avg input=800 tokens, output=500 tokens, blocks=640 → `kv_cache_ratio = 800/(800+500)=0.6`, `max_seq_len = 640*64/(800+500)=31`. ### 2.2 fastdeploy.LLM.chat * messages(list[dict],list[list[dict]]): Input messages (batch supported) * sampling_params: See 2.4 for parameter details * use_tqdm: Enable progress visualization * chat_template_kwargs(dict): Extra template parameters (currently supports enable_thinking(bool)) *usage example: `chat_template_kwargs={"enable_thinking": False}`* ### 2.3 fastdeploy.LLM.generate * prompts(str, list[str], list[int], list[list[int]], dict[str, Any], list[dict[str, Any]]): : Input prompts (batch supported), accepts decoded token ids *example of using a dict-type parameter: `prompts={"prompt": prompt, "multimodal_data": {"image": images}}`* * sampling_params: See 2.4 for parameter details * use_tqdm: Enable progress visualization ### 2.4 fastdeploy.SamplingParams * presence_penalty(float): Penalizes repeated topics (positive values reduce repetition) * frequency_penalty(float): Strict penalty for repeated tokens * repetition_penalty(float): Direct penalty for repeated tokens (>1 penalizes, <1 encourages) * temperature(float): Controls randomness (higher = more random) * top_p(float): Probability threshold for token selection * top_k(int): Number of tokens considered for sampling * min_p(float): Minimum probability relative to the maximum probability for a token to be considered (>0 filters low-probability tokens to improve quality) * max_tokens(int): Maximum generated tokens (input + output) * min_tokens(int): Minimum forced generation length * bad_words(list[str]): Prohibited words ### 2.5 fastdeploy.engine.request.RequestOutput * request_id(str): Request identifier * prompt(str): Input content * prompt_token_ids(list[int]): Tokenized input * outputs(fastdeploy.engine.request.CompletionOutput): Results * finished(bool): Completion status * metrics(fastdeploy.engine.request.RequestMetrics): Performance metrics * num_cached_tokens(int): Cached token count (only valid when enable_prefix_caching``` is enabled) * error_code(int): Error code * error_msg(str): Error message ### 2.6 fastdeploy.engine.request.CompletionOutput * index(int): Batch index * send_idx(int): Request token index * token_ids(list[int]): Output tokens * text(str): Decoded text * reasoning_content(str): (X1 model only) Chain-of-thought output ### 2.7 fastdeploy.engine.request.RequestMetrics * arrival_time(float): Request receipt time * inference_start_time(float): Inference start time * first_token_time(float): First token latency * time_in_queue(float): Queuing time * model_forward_time(float): Forward pass duration * model_execute_time(float): Total execution time (including preprocessing)