# NVIDIA CUDA GPU Installation The following installation methods are available when your environment meets these requirements: - GPU Driver >= 535 - CUDA >= 12.3 - CUDNN >= 9.5 - Python >= 3.10 - Linux X86_64 ## 1. Pre-built Docker Installation (Recommended) **Notice**: The pre-built image only supports SM80/90 GPU(e.g. H800/A800),if you are deploying on SM86/89GPU(L40/4090/L20), please reinstall ```fastdeploy-gpu``` after you create the container. ```shell docker pull ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/fastdeploy-cuda-12.6:2.2.0 ``` ## 2. Pre-built Pip Installation First install paddlepaddle-gpu. For detailed instructions, refer to [PaddlePaddle Installation](https://www.paddlepaddle.org.cn/en/install/quick?docurl=/documentation/docs/en/develop/install/pip/linux-pip_en.html) ```shell python -m pip install paddlepaddle-gpu==3.2.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/ ``` Then install fastdeploy. **Do not install from PyPI**. Use the following methods instead: For SM80/90 architecture GPUs(e.g A30/A100/H100/): ``` # Install stable release python -m pip install fastdeploy-gpu -i https://www.paddlepaddle.org.cn/packages/stable/fastdeploy-gpu-80_90/ --extra-index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple # Install latest Nightly build python -m pip install fastdeploy-gpu -i https://www.paddlepaddle.org.cn/packages/nightly/fastdeploy-gpu-80_90/ --extra-index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple ``` For SM86/89 architecture GPUs(e.g A10/4090/L20/L40): ``` # Install stable release python -m pip install fastdeploy-gpu -i https://www.paddlepaddle.org.cn/packages/stable/fastdeploy-gpu-86_89/ --extra-index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple # Install latest Nightly build python -m pip install fastdeploy-gpu -i https://www.paddlepaddle.org.cn/packages/nightly/fastdeploy-gpu-86_89/ --extra-index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple ``` ## 3. Build from Source Using Docker - Note: ```dockerfiles/Dockerfile.gpu``` by default supports SM 80/90 architectures. To support other architectures, modify ```bash build.sh 1 python false [80,90]``` in the Dockerfile. It's recommended to specify no more than 2 architectures. ```shell git clone https://github.com/PaddlePaddle/FastDeploy cd FastDeploy docker build -f dockerfiles/Dockerfile.gpu -t fastdeploy:gpu . ``` ## 4. Build Wheel from Source First install paddlepaddle-gpu. For detailed instructions, refer to [PaddlePaddle Installation](https://www.paddlepaddle.org.cn/en/install/quick?docurl=/documentation/docs/en/develop/install/pip/linux-pip_en.html) ```shell python -m pip install paddlepaddle-gpu==3.2.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/ ``` Then clone the source code and build: ```shell git clone https://github.com/PaddlePaddle/FastDeploy cd FastDeploy # Argument 1: Whether to build wheel package (1 for yes, 0 for compile only) # Argument 2: Python interpreter path # Argument 3: Whether to compile CPU inference operators # Argument 4: Target GPU architectures bash build.sh 1 python false [80,90] ``` The built packages will be in the ```FastDeploy/dist``` directory. ## Environment Verification After installation, verify the environment with this Python code: ```python import paddle from paddle.jit.marker import unified # Verify GPU availability paddle.utils.run_check() # Verify FastDeploy custom operators compilation from fastdeploy.model_executor.ops.gpu import beam_search_softmax ``` If the above code executes successfully, the environment is ready.