94 Commits

Author SHA1 Message Date
chenjian
fa5a07b8fc [Fix] disable pd connection in mixed (#4014) 2025-09-10 16:00:40 +08:00
qwes5s5
2ee91d7a96 [metrics] Add serveral observability metrics (#3868) (#4011)
* [metrics] Add serveral observability metrics (#3868)

* Add several observability metrics

* [wenxin-tools-584] 【可观测性】支持查看本节点的并发数、剩余block_size、排队请求数等信息

* adjust some metrics and md files

* trigger ci

* adjust ci file

* trigger ci

* trigger ci

---------

Co-authored-by: K11OntheBoat <your_email@example.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>

* version adjust

---------

Co-authored-by: K11OntheBoat <your_email@example.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-09-10 10:59:57 +08:00
Zero Rains
187ccb0f04 get org_vocab_size from args (#3982) 2025-09-09 15:08:28 +08:00
chenjian
98b3647aad [Fix] fix prefix cache in release21 (#3922)
* fix prefix cache in release21

* fix

* Fix when prompt ids is numpy
2025-09-08 11:33:59 +08:00
chenjian
ffec66097c [optimize] Optimize prefix caching in v1 release/2.1 (#3823)
* [optimize] Optimize prefix caching in v1

* [optimize] Optimize prefix caching in v1

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-09-04 19:25:02 +08:00
chen
c2f5c99b1e check (#3866) 2025-09-03 20:46:13 +08:00
ltd0924
cc5430e4c2 [BugFix] [CP] fix max streaming tokens invalid (#3798)
* Update serving_chat.py

* Update serving_completion.py
2025-09-02 21:03:36 +08:00
chen
1e19833ba5 [CP] CP Lm head fp32 and temp_logprob to release/2.1 (#3766)
* [Feature] Add temp_scaled_logprobs and top_p_normalized_logprobs parameters for logits and logprobs post processing (#3552)

* [feature] Add temp_scaled_logprobs and top_p_normalized_logprobs parameters for logits and logprobs post processing

* infer engine support temp_scaled_logprobs and top_p_normalized_logprobs

* delete some code

* code check

* code check and add doc

* fix tokenizer.decoder(-1), return 'Invalid Token'

* add ci for temp_scaled and top_p logprobs

* check test

* check seq len time shape

* logprob clip inf

---------

Co-authored-by: sunlei1024 <sunlei5788@gmail.com>

* [Precision] Support lm_head layer running in float32 (#3597)

* support lm_head fp32 bf16 fp16

* support lm_head fp32 bf16 fp16

* add doc and check code

* lm_head_fp32 specify lm_head as fp32

* code check

* check doc

* code check

---------

Co-authored-by: sunlei1024 <sunlei5788@gmail.com>
2025-09-01 19:56:54 +08:00
Jiang-Jia-Jun
4da603daec Update docs for reasoing-parser 2025-09-01 17:41:16 +08:00
chenjian
c49c43d51c [Bug fix] Fix perf in mixed deployment with yiyan adpater (#3703)
Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
2025-09-01 14:06:09 +08:00
chenjian
a424ab907f [Bug fix] Fix prefix cache in v1 (#3710)
* [Bug fix] Fix prefix cache in V1

* add comment
2025-09-01 10:14:25 +08:00
chenjian
10a95f8ed5 [Fix] Do not drop result when request result slowly (#3704)
* [Fix] Do not drop result when request result slowly

* set default FD_ZMQ_SNDHWM to 64k
2025-09-01 10:14:04 +08:00
RAM
b9af800edd [Optimize] Increase zmq buffer size to prevent apiserver too slowly to consume (#3723) (#3728)
Co-authored-by: chenjian <1435317881@qq.com>
2025-08-30 15:58:18 +08:00
Zero Rains
64cf769bee fix the bug when num_key_value_heads < tensor_parallel_size (#3722) 2025-08-30 12:40:29 +08:00
Jiang-Jia-Jun
3364af767b Revert "[BugFix] Modify the bug in Qwen2 when enabling ENABLE_V1_KVCACHE_SCHE…" (#3719)
This reverts commit 578b8c5da2.
2025-08-29 19:55:50 +08:00
lizexu123
578b8c5da2 [BugFix] Modify the bug in Qwen2 when enabling ENABLE_V1_KVCACHE_SCHEDULER. (#3670)
* merge 2.1

* fix

* pre-commit

* fix
2025-08-29 19:53:44 +08:00
ltd0924
8517e04956 [bugfix]PR3663 parameter is 0 (#3679)
* Update engine.py

* Update engine_client.py

* Update engine.py

* Update engine.py
2025-08-29 11:46:42 +08:00
李泳桦
aad9d3564e [feat] add metrics for yiyan adapter (#3615)
* [feat] add metrics for yiyan adapter (#3219)

* [feat] add metrics for yiyan adapter

* [fix] fix metrics num_requests_waiting and num_requests_running

* [fix] fix metrics gpu_cache_usage_perc

* [refactor] change where requests_number increases

* [chore] rename xxx_block_num as xxx_gpu_block_num, and update their values accordingly

* [chore] delete useless code

* [fix] fix error
2025-08-28 21:16:58 +08:00
Jiang-Jia-Jun
6039cdc2c5 Revert "[BugFix] fix parameter is 0 (#3663)" (#3681)
This reverts commit 6a90cfd144.
2025-08-28 15:55:55 +08:00
李泳桦
6545994c58 [fix] qwen output inconsistency when top_p=0 (#3634) (#3662)
* [fix] qwen output inconsistency when top_p=0

* [fix] remove decode pre_id code
2025-08-28 09:54:17 +08:00
ltd0924
6a90cfd144 [BugFix] fix parameter is 0 (#3663)
* Update engine.py

* Update engine_client.py
2025-08-28 09:52:17 +08:00
YuBaoku
47e6270dec [CI] add container naming and cleanup logic in workflows (#3655) 2025-08-27 21:51:56 +08:00
zhuzixuan
80db7fce05 【Bugfix】修复2.1分支上0.3B模型性能大幅下降 (#3624)
* 恢复异步方法。
【BugFix】completion接口echo回显支持 (#3245)

* wenxin-tools-511,修复v1/completion无法回显的问题。

* 支持多prompt的回显

* 支持多prompt情况下的流式回显

* 补充了 completion 接口支持 echo 的单元测试

* pre-commit

* 移除了多余的test文件

* 修复了completion接口echo支持的单测方法

* 补充了单元测试文件

* 补充单测

* unittest

* 补充单测

* 修复单测

* 删除不必要的assert.

* 重新提交

* 更新测试方法

* ut

* 验证是否是正确思路单测

* 验证是否是正确思路单测

* 验证是否是正确思路单测3

* 优化单测代码,有针对性地缩小单测范围。

* 优化单测代码2,有针对性地缩小单测范围。

* 优化单测代码3,有针对性地缩小单测范围。

* support 'echo' in chat/completion.

* update

* update

* update

* update

* update

* update

* 补充了关于tokenid的单元测试

* update

* 修正index错误

* 修正index错误

* [Bugfix] Significant performance degradation of 0.3B model on branch 2.1
2025-08-27 15:29:01 +08:00
ltd0924
96aed92e4a [BugFix] ep mixed mode offline exit failed (#3623) 2025-08-26 20:12:44 +08:00
SunLei
d8444e22ca fix: replace list * n initialization with list comprehension to avoid shared references (#3620) 2025-08-26 17:53:09 +08:00
李泳桦
df27a488b1 [fix] fix ZmqIpcClient.close() error (#3600) 2025-08-26 10:16:41 +08:00
李泳桦
b1f8f1aa07 [fix] fix completion stream api output_tokens not in usage (#3588) 2025-08-25 18:31:57 +08:00
zhuzixuan
4e369c7fa7 【BugFix】completion接口echo回显支持 (#3477)
* update
【BugFix】completion接口echo回显支持 (#3245)

* wenxin-tools-511,修复v1/completion无法回显的问题。

* 支持多prompt的回显

* 支持多prompt情况下的流式回显

* 补充了 completion 接口支持 echo 的单元测试

* pre-commit

* 移除了多余的test文件

* 修复了completion接口echo支持的单测方法

* 补充了单元测试文件

* 补充单测

* unittest

* 补充单测

* 修复单测

* 删除不必要的assert.

* 重新提交

* 更新测试方法

* ut

* 验证是否是正确思路单测

* 验证是否是正确思路单测

* 验证是否是正确思路单测3

* 优化单测代码,有针对性地缩小单测范围。

* 优化单测代码2,有针对性地缩小单测范围。

* 优化单测代码3,有针对性地缩小单测范围。

* support 'echo' in chat/completion.

* update

* update

* update

* update

* update

* update

* 补充了关于tokenid的单元测试

* update

* 修正index错误

* 修正index错误

* 解决冲突

* 解决冲突

* 解决冲突

---------

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-08-23 13:08:48 +08:00
Zero Rains
f8d3255520 [Cherry-Pick] Launch expert_service before kv_cache initialization in worker_process (#3558)
* launch expert_service before kv_cache initialization

* update code

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-08-23 13:08:34 +08:00
chenjian
e8af92aab7 [Feature] Support mixed deployment with yiyan adapter (#3533)
* [Feature] Support mixed deployment with yiyan adapter

* [Feature] Support mixed deployment with yiyan adapter

* fix merge

---------

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-08-23 09:56:47 +08:00
K11OntheBoat
8b9f167ccc Avoid tokenizer bug for XPU CI (#3563)
Co-authored-by: K11OntheBoat <“ruianmaidanglao@163.com”>
2025-08-23 00:09:56 +08:00
K11OntheBoat
93d999b830 [Feature] Support limit thinking len for text models (#3527)
* support limit thinking len

* remove default think_end_id

* remove reasoning_max_tokens

* update think_end_id for ernie

* update think_end_id for ernie.

---------

Co-authored-by: K11OntheBoat <“ruianmaidanglao@163.com”>
Co-authored-by: luukunn <981429396@qq.com>
2025-08-22 14:48:15 +08:00
ltd0924
4d6fb96cd6 [BugFix] Api server bugs (#3530)
* Update serving_chat.py

* Update serving_completion.py

* Update serving_completion.py
2025-08-22 14:01:14 +08:00
ltd0924
c18975366e [BUGFIX] fix ep mixed bug (#3513)
* Update expert_service.py

* Update engine.py

* Update engine.py

* Update engine.py

* Update expert_service.py

* Update engine.py
2025-08-22 11:35:50 +08:00
luukunn
4a9c04a746 [Feature] add tool parser (#3518)
* [Feature] Pass through the `chat_template_kwargs` to the data processing module (#3421)

* fix chat_template_args

* fix args

* add offline

* add offline

* fix

* fix

* fix default enable_thinking value

* fix default enable_thinking value

* modify condition

* Revert "modify condition"

This reverts commit 26430bdeb1.

* fix unit test

* add Tool Parser (#3272)

* add tool-parser

* add tool-parser

* add tool parser

* add tool parser

* fix

* add offline

* add offline

* fix

* parsers:tool&reasoning

* 修改tool parser名称·

* update

* fix reasoning-parser

* add requirements

* fix finish reason

* fix

* fix reasoning-parser

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: zhuzixuan <zhuzixuan@baidu.com>

* [Feature] add tool parser (#3483)

* add tool parser

* add x1 enable_thinking

* restart ci

* fix vl reasoning parser

* modify call style

* modify call style

* add offline enablethinking

* fix completion

* fix

* fix unit test

* fix unit test

* fix unit test

* fix vl reasoning parser

* fix vl reasoning parser

* fix unit test

---------

Co-authored-by: zhuzixuan <zhuzixuan@baidu.com>
2025-08-22 11:14:35 +08:00
RAM
d97aab25bc [Excutor] Fixed the issue of CUDA graph execution failure caused by different branches during decoding (#3223) (#3512)
* 彻底解决解码切块问题

* update C8 and C4 kernel

* fix problem

* fix with pre-commit

* retain branch for mtp

Co-authored-by: Jundong Liu <61149469+littledgg@users.noreply.github.com>
2025-08-21 20:58:47 +08:00
李泳桦
1b399b91c0 [fix] setting disable_chat_template while passing prompt_token_ids led to response error (#3511)
* [fix] setting disable_chat_template while passing prompt_token_ids led to response error

* [fix] code syntax

* [test] add test case for this bug

* [test] add test case for empty message list

* [test] fix test case for empty message list
2025-08-21 17:33:10 +08:00
memoryCoderC
8bf48dfab8 [Feature] add prompt_tokens and completion_tokens (#3505)
Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
2025-08-21 14:10:06 +08:00
lizexu123
fcdc5c2c54 fix num_seqs (#3396) 2025-08-21 14:03:11 +08:00
YuBaoku
5d4d38674f [CI] fix run_ci error in release/2.1 (#3499) 2025-08-21 10:07:20 +08:00
luukunn
d07338f932 [Feature] Pass through the chat_template_kwargs to the data processing module (#3421) (#3469)
* fix chat_template_args

* fix args

* add offline

* add offline

* fix

* fix

* fix default enable_thinking value

* fix default enable_thinking value

* modify condition

* Revert "modify condition"

This reverts commit 26430bdeb1.

* fix unit test
2025-08-19 17:40:12 +08:00
gaoziyuan
3ffbc98179 fix dynamic_weight config bug (#3432) 2025-08-18 14:36:53 +08:00
chenjian
edd13aad66 support logprob in v1 for release/2.1 (#3446) 2025-08-17 08:16:00 +08:00
RAM
1065406ed3 [Docs]Updata docs of graph opt backend (#3443)
* Updata docs of graph opt backend

* update best_practices

* update mkdocs.yaml

* [Docs]Update link
2025-08-15 22:10:54 +08:00
ming1753
570ad54b51 [Docs] release 2.1 (#3441)
* [Docs] release 2.1

* sync gh-pages.yml
2025-08-15 19:32:29 +08:00
yongqiangma
9af57513b3 update installation readme (#3435) 2025-08-15 18:44:39 +08:00
JYChen
2e6d97f5eb cherry-pick update docs (#3422) 2025-08-15 13:00:03 +08:00
Jiang-Jia-Jun
ff030d9090 Update Dockerfile.gpu 2025-08-15 12:29:37 +08:00
ltd0924
5a829fc7af [Docs] Add Multinode deployment document (#3416)
* Create multi-node_deployment.md

* Create multi-node_deployment.md
2025-08-15 09:55:34 +08:00
yinwei
d998efbc17 [Doc]Release fastdeploy-xpu 2.0.3 (#3408)
* fix v1 schedule oom bug

* fix v1 schedule oom bug

* update release note

* update info
2025-08-14 19:19:54 +08:00
yinwei
8a15bdc0c8 [Doc]Release fastdeploy-xpu 2.1.0 (#3407)
* fix v1 schedule oom bug

* fix v1 schedule oom bug

* update release note
2025-08-14 19:11:16 +08:00
memoryCoderC
ad8ea68906 [BugFix] fix ErnieProcessor not set raw_prediction (#3401) 2025-08-14 19:10:07 +08:00
yinwei
101605869c [XPU] Fixed the issue of performance degradation caused by enabling ENABLE_V1_KVCACHE_SCHEDULER (#3393)
* fix v1 schedule oom bug

* fix v1 schedule oom bug
2025-08-14 17:41:40 +08:00
Jiang-Jia-Jun
28918702c2 Revert "Merge branch 'feature/online/vs_think_20250813' into release/2.1"
This reverts commit 02596fc537, reversing
changes made to 03347626a6.
2025-08-14 17:20:29 +08:00
Jiang-Jia-Jun
02596fc537 Merge branch 'feature/online/vs_think_20250813' into release/2.1 2025-08-14 17:13:36 +08:00
ltd0924
03347626a6 [BugFix] fix control signal release failed (#3374)
* [BugFix]

* [BugFix]

* [BugFix]

* [BugFix]

* fix

* fix

---------

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-08-14 17:01:25 +08:00
YUNSHEN XIE
b2df0311b8 Optimize CI execution workflow. (#3371) (#3384)
* fix
2025-08-14 14:51:15 +08:00
xiaolei373
d1d321bafd feat(log):add_request_and_response_log (#3392) 2025-08-14 14:50:48 +08:00
Jiang-Jia-Jun
dc5d3ff5a0 [Polish Code] Remove useless notes 2025-08-14 14:05:29 +08:00
Jiang-Jia-Jun
f0a707e06f [BugFix] Fix default log level of paddleformers (#3377)
Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
2025-08-14 11:36:13 +08:00
JYChen
4870919682 fix stopseq error info (#3342)
Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
2025-08-14 10:45:05 +08:00
ming1753
a375378cc1 [Bug Fix] Fix V1 video bug (#3387) 2025-08-14 09:49:22 +08:00
YUNSHEN XIE
192f9caab4 Pre ce modified (#3335) (#3360)
* Pre ce modified (#3335)

* update

* update

* fix

* fix

* update

* update

* update

* fix

* update

* update

* update

* add ut fix pr(3367)
2025-08-13 18:50:52 +08:00
luukunn
81092c0fe3 add tool parser 2025-08-13 16:06:22 +08:00
YUNSHEN XIE
ad816f20f4 Use latest PaddlePaddle package (#3347) (#3352)
* Use latest PaddlePaddle package

* fix
2025-08-13 11:06:01 +08:00
memoryCoderC
37b76158f9 Completion add raw_prediction/text_after_process (#3362) 2025-08-12 23:20:36 +08:00
memoryCoderC
fe2094609f Release/2.1 (#3361)
* [BugFix] v1/completions add finish_reason

* update TestOpenAIServingCompletion for merge
2025-08-12 23:06:51 +08:00
gaoziyuan
b4bb54b56b bugfix (#3322) 2025-08-12 16:16:37 +08:00
Jiang-Jia-Jun
eeec4bd15e Remove useless code release/2.1 (#3338) 2025-08-12 11:32:50 +08:00
chenjian
d2592750f7 fix bug for scheduler v0 (#3306)
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
Co-authored-by: YUNSHEN XIE <1084314248@qq.com>
2025-08-12 00:41:15 +08:00
chenjian
25f51b0611 Fix block num in schduelr v1 for release 2.1 (#3315)
* fix bug for scheduler v0

* fix block num setting in scheduler v1 for release 2.1

* fix block num setting in scheduler v1 for release 2.1

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
Co-authored-by: YUNSHEN XIE <1084314248@qq.com>
2025-08-12 00:41:05 +08:00
ming1753
9b07f85f6d [Bug Fix] fix vl V1 schedule bug (#3284)
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
Co-authored-by: YUNSHEN XIE <1084314248@qq.com>
2025-08-12 00:40:45 +08:00
Sunny-bot1
2fe31c6f0f [Docs]fix sampling docs 2.1 (#3333)
* [Docs]fix sampling docs (#3113)

* fix sampling docs

* fix sampling docs

* update

* fix docs
2025-08-11 21:04:10 +08:00
YUNSHEN XIE
a33e557732 fix ci pypi index error (#3327) 2025-08-11 20:24:27 +08:00
kevin
054c790642 fix uvicorn multi worker error (#3309)
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-08-11 20:19:31 +08:00
Jiang-Jia-Jun
ca4e4ab911 Revert "[BugFix] fix ep (#3290)" (#3317)
This reverts commit 86ff68be4b.
2025-08-11 16:17:58 +08:00
chenjian
c000cff744 fix scheduler bug in release2.1 (#3295) 2025-08-10 13:55:22 +08:00
lizexu123
86ff68be4b [BugFix] fix ep (#3290)
* fix ep

* fix
2025-08-09 16:32:35 +08:00
yinwei
702c313ed1 revert pr (#3286) 2025-08-09 16:29:35 +08:00
ltd0924
6706ccb37e [BugFix] fix too many open files problem (#3275) 2025-08-08 20:11:32 +08:00
JYChen
1b6f482c15 [Cherry-pick] fix stop seq (#3263)
* fix out-bound value for stop sequence

* catch error if there are out-of-bounds value

* check in offline mode
2025-08-07 19:11:37 +08:00
sg263
5d3bf308f6 merge develop trace FD_START (#3253)
Co-authored-by: shige <shige@baidu.com>
2025-08-07 11:10:55 +08:00
Sunny-bot1
f672a34f95 [FIX 2.1]fix bad_words when sending requests consecutively (#3199)
* fix bad_words

* fix log

* fix log
2025-08-06 15:47:27 +08:00
lizexu123
bc0b92bba4 [BugFix] support real batch_size (#3109) (#3217)
* support real bsz

* fix

* fix xpu_model_runner.py,gpu_model_runner.py,gcu_model_runner.py,iluvatar_model_runner.py

* add event_loop_ep

* fix

* Add comments

* fix

* support mtp real_batch_size

* fix

* self.tmp_seq_lens_this_time->self.seq_lens_this_time_buffer

* fix

* fix VL real_seq_lens_this_time

* fix

* fix mtp

* fix

* fix mtp

* fix xpu

* fix
2025-08-06 14:30:33 +08:00
SunLei
3dd8492601 [Bugfix] Fix uninitialized decoded_token and add corresponding unit test (#3201)
* Update test_base_chat.py (#3183)

* [Bugfix] Fix uninitialized decoded_token and add corresponding unit test.

---------

Co-authored-by: Divano <dddivano@outlook.com>
2025-08-05 10:55:22 +08:00
RAM
bd77a3a643 [Bug Fix] Fix bug of MLA Attention Backend (#3178)
* fix typo

* fix mla attention backend
2025-08-05 10:53:27 +08:00
YUNSHEN XIE
9561603ed9 Apply CI fix from Develop (#3151)
* fix ci approve

* Describe PR diff coverage using JSON file (#3114)

* Refactored ci pipeline

* update

* Describe PR diff coverage using JSON file

* remove pip cache setting from Approve

* fix

* update

* fix ci (#3141)

* fix
2025-08-04 16:30:56 +08:00
plusNew001
e26313a355 Update Dockerfile.xpu (#3147) 2025-08-04 16:25:33 +08:00
yinwei
4367c09a5f Fix out-of-memory issue during single-XPU deployment (#3131) 2025-08-04 16:02:43 +08:00
bukejiyu
8e789dcb67 fix load_pre_sharded_checkpoint (#3152) (#3169)
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-08-04 15:44:10 +08:00
ltd0924
5f6fc7f7b9 Update cache_messager.py (#3173) 2025-08-04 15:09:17 +08:00
RAM
d4059cabf0 fix typo (#3153) 2025-08-01 22:34:59 +08:00
chen
c8dd5976ae fix request_output sampling_params (#3154) 2025-08-01 22:34:33 +08:00
Jiang-Jia-Jun
4880c16be3 Update setup.py 2025-07-31 20:30:24 +08:00
1222 changed files with 31881 additions and 163045 deletions

View File

@@ -16,7 +16,7 @@
---
Language: Cpp
BasedOnStyle: Google
IndentWidth: 2
IndentWidth: 4
TabWidth: 2
ContinuationIndentWidth: 4
AccessModifierOffset: -1 # The private/protected/public has no indent in class

View File

@@ -1,30 +0,0 @@
name: 'Rerun Workflow'
description: 'Re-run GitHub Actions workflow for a given Pull Request'
inputs:
GITHUB_TOKEN:
description: 'GitHub token with repo scope'
required: true
OWNER:
description: 'Repository owner'
required: true
REPO:
description: 'Repository name'
required: true
PR_ID:
description: 'Pull Request ID'
required: true
JOB_NAME:
description: 'Job name to rerun'
required: true
runs:
using: 'composite'
steps:
- run: bash ./.github/actions/rerun-workflow/rerun.sh
shell: bash
env:
GITHUB_TOKEN: ${{ inputs.GITHUB_TOKEN }}
OWNER: ${{ inputs.OWNER }}
REPO: ${{ inputs.REPO }}
PR_ID: ${{ inputs.PR_ID }}
JOB_NAME: ${{ inputs.JOB_NAME }}

View File

@@ -1,77 +0,0 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e
COMMIT_SHA=$(curl -s -H "Authorization: token $GITHUB_TOKEN" \
"https://api.github.com/repos/$OWNER/$REPO/pulls/$PR_ID" | jq -r '.head.sha')
echo "Commit SHA: $COMMIT_SHA"
response=$(curl -s -H "Authorization: token $GITHUB_TOKEN" \
"https://api.github.com/repos/$OWNER/$REPO/actions/runs?head_sha=$COMMIT_SHA&per_page=100")
echo "Response: $response"
run_ids=$(echo "$response" | jq -r '.workflow_runs[].id')
if [ -n "$run_ids" ]; then
echo "Found run_ids for commit $COMMIT_SHA: $run_ids"
for run_id in $run_ids; do
if [ "$JOB_NAME" = "all-failed" ]; then
echo "Rerunning all failed jobs for run_id: $run_id"
rerun_response=$(curl -X POST -s -w "%{http_code}" -o /dev/null \
-H "Accept: application/vnd.github.v3+json" \
-H "Authorization: Bearer $GITHUB_TOKEN" \
"https://api.github.com/repos/$OWNER/$REPO/actions/runs/$run_id/rerun-failed-jobs")
if [ "$rerun_response" -eq 201 ]; then
echo "Successfully requested rerun for all blocked jobs in run_id: $run_id"
else
echo "Failed to request rerun for run_id: $run_id with status code $rerun_response"
fi
else
jobs_response=$(curl -s -H "Authorization: token $GITHUB_TOKEN" \
"https://api.github.com/repos/$OWNER/$REPO/actions/runs/$run_id/jobs")
echo "Jobs Response for run_id $run_id: $jobs_response"
# if [[ "$JOB_NAME" == *"bypass"* ]]; then
block_jobs=$(echo "$jobs_response" | jq -r --arg job_name "$JOB_NAME" \
'.jobs[] | select(.name == $job_name) | .id')
# else
# block_jobs=$(echo "$jobs_response" | jq -r --arg job_name "$JOB_NAME" \
# '.jobs[] | select(.name == $job_name and .conclusion != "success") | .id')
# fi
if [ -n "$block_jobs" ]; then
echo "Found block jobs for run_id $run_id: $block_jobs"
for job_id in $block_jobs; do
echo "Rerunning job_id: $job_id"
curl -X POST -H "Accept: application/vnd.github.v3+json" \
-H "Authorization: token $GITHUB_TOKEN" \
"https://api.github.com/repos/$OWNER/$REPO/actions/jobs/$job_id/rerun"
done
else
echo "No block jobs found for run_id $run_id with name $JOB_NAME."
fi
fi
done
else
echo "No matching workflow runs found for commit $COMMIT_SHA."
exit 1
fi

View File

@@ -1,30 +0,0 @@
<!-- TemplateReference: https://github.com/PaddlePaddle/FastDeploy/blob/develop/.github/pull_request_template.md -->
<!-- Thank you for your contribution! Please follow these guidelines to enhance your pull request. If anything is unclear, submit your PR and reach out to maintainers for assistance. -->
## Motivation
<!-- Describe the purpose and goals of this pull request. -->
## Modifications
<!-- Detail the changes made in this pull request. -->
## Usage or Command
<!-- You should provide the usage if this pr is about the new function. -->
<!-- You should provide the command to run if this pr is about the performance optimization or fixing bug. -->
## Accuracy Tests
<!-- If this pull request affects model outputs (e.g., changes to the kernel or model forward code), provide accuracy test results. -->
## Checklist
- [ ] Add at least a tag in the PR title.
- Tag list: [`[FDConfig]`,`[APIServer]`,`[Engine]`, `[Scheduler]`, `[PD Disaggregation]`, `[Executor]`, `[Graph Optimization]`, `[Speculative Decoding]`, `[RL]`, `[Models]`, `[Quantization]`, `[Loader]`, `[OP]`, `[KVCache]`, `[DataProcessor]`, `[BugFix]`, `[Docs]`, `[CI]`, `[Optimization]`, `[Feature]`, `[Benchmark]`, `[Others]`, `[XPU]`, `[HPU]`, `[GCU]`, `[DCU]`, `[Iluvatar]`, `[Metax]`]
- You can add new tags based on the PR content, but the semantics must be clear.
- [ ] Format your code, run `pre-commit` before commit.
- [ ] Add unit tests. Please write the reason in this PR if no unit tests.
- [ ] Provide accuracy results.
- [ ] If the current PR is submitting to the `release` branch, make sure the PR has been submitted to the `develop` branch, then cherry-pick it to the `release` branch with the `[Cherry-Pick]` PR tag.

View File

@@ -1,188 +0,0 @@
name: Accuracy Test
description: "Run Accuracy Tests"
on:
workflow_call:
inputs:
DOCKER_IMAGE:
description: "Build Images"
required: true
type: string
default: "ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:cuda126-py310"
FASTDEPLOY_ARCHIVE_URL:
description: "URL of the compressed FastDeploy code archive."
required: true
type: string
FASTDEPLOY_WHEEL_URL:
description: "URL of the FastDeploy Wheel."
required: true
type: string
CACHE_DIR:
description: "Cache Dir Use"
required: false
type: string
default: ""
MODEL_CACHE_DIR:
description: "Cache Dir Use"
required: false
type: string
default: ""
jobs:
accuracy_tests:
runs-on: [self-hosted, GPU-h20-1Cards]
timeout-minutes: 60
steps:
- name: Code Prepare
shell: bash
env:
docker_image: ${{ inputs.DOCKER_IMAGE }}
fd_archive_url: ${{ inputs.FASTDEPLOY_ARCHIVE_URL }}
run: |
set -x
REPO="https://github.com/${{ github.repository }}.git"
FULL_REPO="${{ github.repository }}"
REPO_NAME="${FULL_REPO##*/}"
BASE_BRANCH="${{ github.base_ref }}"
docker pull ${docker_image}
# Clean the repository directory before starting
docker run --rm --net=host -v $(pwd):/workspace -w /workspace \
-e "REPO_NAME=${REPO_NAME}" \
${docker_image} /bin/bash -c '
if [ -d ${REPO_NAME} ]; then
echo "Directory ${REPO_NAME} exists, removing it..."
rm -rf ${REPO_NAME}*
fi
'
wget -q --no-proxy ${fd_archive_url}
tar -xf FastDeploy.tar.gz
rm -rf FastDeploy.tar.gz
cd FastDeploy
git config --global user.name "FastDeployCI"
git config --global user.email "fastdeploy_ci@example.com"
git log -n 3 --oneline
- name: Run FastDeploy Base Tests
shell: bash
env:
docker_image: ${{ inputs.DOCKER_IMAGE }}
fastdeploy_wheel_url: ${{ inputs.FASTDEPLOY_WHEEL_URL }}
CACHE_DIR: ${{ inputs.CACHE_DIR }}
MODEL_CACHE_DIR: ${{ inputs.MODEL_CACHE_DIR }}
run: |
runner_name="${{ runner.name }}"
CARD_ID=$(echo "${runner_name}" | awk -F'-' '{print $NF}')
DEVICES=$(echo "$CARD_ID" | fold -w1 | paste -sd,)
DEVICE_PORT=$(echo "$DEVICES" | cut -d',' -f1)
FLASK_PORT=$((42068 + DEVICE_PORT * 100))
FD_API_PORT=$((42088 + DEVICE_PORT * 100))
FD_ENGINE_QUEUE_PORT=$((42058 + DEVICE_PORT * 100))
FD_METRICS_PORT=$((42078 + DEVICE_PORT * 100))
FD_CACHE_QUEUE_PORT=$((42098 + DEVICE_PORT * 100))
echo "Test ENV Parameter:"
echo "========================================================="
echo "FLASK_PORT=${FLASK_PORT}"
echo "FD_API_PORT=${FD_API_PORT}"
echo "FD_ENGINE_QUEUE_PORT=${FD_ENGINE_QUEUE_PORT}"
echo "FD_METRICS_PORT=${FD_METRICS_PORT}"
echo "FD_CACHE_QUEUE_PORT=${FD_CACHE_QUEUE_PORT}"
echo "DEVICES=${DEVICES}"
echo "========================================================="
CACHE_DIR="${CACHE_DIR:-$(dirname "$(dirname "${{ github.workspace }}")")}"
echo "CACHE_DIR is set to ${CACHE_DIR}"
if [ ! -f "${CACHE_DIR}/gitconfig" ]; then
touch "${CACHE_DIR}/gitconfig"
fi
if [ ! -d "${MODEL_CACHE_DIR}" ]; then
echo "Error: MODEL_CACHE_DIR '${MODEL_CACHE_DIR}' does not exist."
exit 1
fi
PORTS=($FLASK_PORT $FD_API_PORT $FD_ENGINE_QUEUE_PORT $FD_METRICS_PORT $FD_CACHE_QUEUE_PORT)
LOG_FILE="./port_cleanup_$(date +%Y%m%d_%H%M%S).log"
echo "==== LOG_FILE is ${LOG_FILE} ===="
echo "==== PORT CLEAN BEFORE TASK RUN ====" | tee -a $LOG_FILE
for port in "${PORTS[@]}"; do
PIDS=$(lsof -t -i :$port || true)
if [ -n "$PIDS" ]; then
echo "Port $port is occupied by PID(s): $PIDS" | tee -a $LOG_FILE
echo "$PIDS" | xargs -r kill -9
echo "Port $port cleared" | tee -a $LOG_FILE
else
echo "Port $port is free" | tee -a $LOG_FILE
fi
done
echo "==== PORT CLEAN COMPLETE ====" | tee -a $LOG_FILE
echo "========================================================="
echo "Ensuring no stale container named ${runner_name} ..."
if [ "$(docker ps -a -q -f name=${runner_name})" ]; then
echo "Removing stale container: ${runner_name}"
docker rm -f ${runner_name} || true
fi
docker run --rm --ipc=host --pid=host --net=host \
--name ${runner_name} \
-v $(pwd):/workspace \
-w /workspace \
-e fastdeploy_wheel_url=${fastdeploy_wheel_url} \
-e "FD_API_PORT=${FD_API_PORT}" \
-e "FD_ENGINE_QUEUE_PORT=${FD_ENGINE_QUEUE_PORT}" \
-e "FD_METRICS_PORT=${FD_METRICS_PORT}" \
-e "FD_CACHE_QUEUE_PORT=${FD_CACHE_QUEUE_PORT}" \
-e "FLASK_PORT=${FLASK_PORT}" \
-v "${MODEL_CACHE_DIR}:/MODELDATA" \
-v "${CACHE_DIR}/gitconfig:/etc/gitconfig:ro" \
-v "${CACHE_DIR}/.cache:/root/.cache" \
-v "${CACHE_DIR}/ConfigDir:/root/.config" \
-e TZ="Asia/Shanghai" \
--gpus '"device='"${DEVICES}"'"' ${docker_image} /bin/bash -xc '
python -m pip install --pre paddlepaddle-gpu -i https://www.paddlepaddle.org.cn/packages/nightly/cu126/
pip config set global.index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
python -m pip install ${fastdeploy_wheel_url}
python -m pip install pytest
wget https://paddle-qa.bj.bcebos.com/zhengtianyu/tools/llm-deploy-linux-amd64
chmod +x ./llm-deploy-linux-amd64
./llm-deploy-linux-amd64 -python python3.10 \
-model_name ERNIE-4.5-0.3B-Paddle \
-model_path /MODELDATA \
--skip install,model
git config --global --add safe.directory /workspace/FastDeploy
cd FastDeploy
pushd tests/ce/deploy
ps -ef | grep "${FD_CACHE_QUEUE_PORT}" | grep -v grep | awk "{print \$2}" | xargs -r kill -9
ps -ef | grep "${FD_ENGINE_QUEUE_PORT}" | grep -v grep | awk "{print \$2}" | xargs -r kill -9
python3.10 deploy.py > dd.log 2>&1 &
sleep 3
curl -X POST http://0.0.0.0:${FLASK_PORT}/start \
-H "Content-Type: application/json" \
-d "{\"--model\": \"/MODELDATA/ERNIE-4.5-0.3B-Paddle\"}"
curl -X POST http://localhost:${FLASK_PORT}/wait_for_infer?timeout=90
popd
pushd tests/ce/accuracy_cases
export URL=http://localhost:${FD_API_PORT}/v1/chat/completions
export TEMPLATE=TOKEN_LOGPROB
export MODEL_SIZE=0.3B
TEST_EXIT_CODE=0
python gsm8k.py || TEST_EXIT_CODE=1
popd
echo "TEST_EXIT_CODE=${TEST_EXIT_CODE}" >> /workspace/FastDeploy/exit_code.env
'
if [ -f ./FastDeploy/exit_code.env ]; then
source ./FastDeploy/exit_code.env
cat ./FastDeploy/exit_code.env >> $GITHUB_ENV
fi
echo "TEST_EXIT_CODE=${TEST_EXIT_CODE}"
exit ${TEST_EXIT_CODE}

View File

@@ -1,231 +0,0 @@
name: Base Test
description: "Run Base Tests"
on:
workflow_call:
inputs:
DOCKER_IMAGE:
description: "Build Images"
required: true
type: string
default: "ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:cuda126-py310"
FASTDEPLOY_ARCHIVE_URL:
description: "URL of the compressed FastDeploy code archive."
required: true
type: string
FASTDEPLOY_WHEEL_URL:
description: "URL of the FastDeploy Wheel."
required: true
type: string
CACHE_DIR:
description: "Cache Dir Use"
required: false
type: string
default: ""
MODEL_CACHE_DIR:
description: "Cache Dir Use"
required: false
type: string
default: ""
jobs:
base_tests:
runs-on: [self-hosted, GPU-h20-1Cards]
timeout-minutes: 60
steps:
- name: Code Prepare
shell: bash
env:
docker_image: ${{ inputs.DOCKER_IMAGE }}
fd_archive_url: ${{ inputs.FASTDEPLOY_ARCHIVE_URL }}
run: |
set -x
REPO="https://github.com/${{ github.repository }}.git"
FULL_REPO="${{ github.repository }}"
REPO_NAME="${FULL_REPO##*/}"
BASE_BRANCH="${{ github.base_ref }}"
docker pull ${docker_image}
# Clean the repository directory before starting
docker run --rm --net=host -v $(pwd):/workspace -w /workspace \
-e "REPO_NAME=${REPO_NAME}" \
${docker_image} /bin/bash -c '
if [ -d ${REPO_NAME} ]; then
echo "Directory ${REPO_NAME} exists, removing it..."
rm -rf ${REPO_NAME}*
fi
'
wget -q --no-proxy ${fd_archive_url}
tar -xf FastDeploy.tar.gz
rm -rf FastDeploy.tar.gz
cd FastDeploy
git config --global user.name "FastDeployCI"
git config --global user.email "fastdeploy_ci@example.com"
git log -n 3 --oneline
- name: Run FastDeploy Base Tests
shell: bash
env:
docker_image: ${{ inputs.DOCKER_IMAGE }}
fastdeploy_wheel_url: ${{ inputs.FASTDEPLOY_WHEEL_URL }}
CACHE_DIR: ${{ inputs.CACHE_DIR }}
MODEL_CACHE_DIR: ${{ inputs.MODEL_CACHE_DIR }}
run: |
runner_name="${{ runner.name }}"
CARD_ID=$(echo "${runner_name}" | awk -F'-' '{print $NF}')
DEVICES=$(echo "$CARD_ID" | fold -w1 | paste -sd,)
DEVICE_PORT=$(echo "$DEVICES" | cut -d',' -f1)
FLASK_PORT=$((42068 + DEVICE_PORT * 100))
FD_API_PORT=$((42088 + DEVICE_PORT * 100))
FD_ENGINE_QUEUE_PORT=$((42058 + DEVICE_PORT * 100))
FD_METRICS_PORT=$((42078 + DEVICE_PORT * 100))
FD_CACHE_QUEUE_PORT=$((42098 + DEVICE_PORT * 100))
echo "Test ENV Parameter:"
echo "========================================================="
echo "FLASK_PORT=${FLASK_PORT}"
echo "FD_API_PORT=${FD_API_PORT}"
echo "FD_ENGINE_QUEUE_PORT=${FD_ENGINE_QUEUE_PORT}"
echo "FD_METRICS_PORT=${FD_METRICS_PORT}"
echo "FD_CACHE_QUEUE_PORT=${FD_CACHE_QUEUE_PORT}"
echo "DEVICES=${DEVICES}"
echo "========================================================="
CACHE_DIR="${CACHE_DIR:-$(dirname "$(dirname "${{ github.workspace }}")")}"
echo "CACHE_DIR is set to ${CACHE_DIR}"
if [ ! -f "${CACHE_DIR}/gitconfig" ]; then
touch "${CACHE_DIR}/gitconfig"
fi
if [ ! -d "${MODEL_CACHE_DIR}" ]; then
echo "Error: MODEL_CACHE_DIR '${MODEL_CACHE_DIR}' does not exist."
exit 1
fi
PORTS=($FLASK_PORT $FD_API_PORT $FD_ENGINE_QUEUE_PORT $FD_METRICS_PORT $FD_CACHE_QUEUE_PORT)
LOG_FILE="./port_cleanup_$(date +%Y%m%d_%H%M%S).log"
echo "==== LOG_FILE is ${LOG_FILE} ===="
echo "==== PORT CLEAN BEFORE TASK RUN ====" | tee -a $LOG_FILE
for port in "${PORTS[@]}"; do
PIDS=$(lsof -t -i :$port || true)
if [ -n "$PIDS" ]; then
echo "Port $port is occupied by PID(s): $PIDS" | tee -a $LOG_FILE
echo "$PIDS" | xargs -r kill -9
echo "Port $port cleared" | tee -a $LOG_FILE
else
echo "Port $port is free" | tee -a $LOG_FILE
fi
done
echo "==== PORT CLEAN COMPLETE ====" | tee -a $LOG_FILE
echo "========================================================="
echo "Ensuring no stale container named ${runner_name} ..."
if [ "$(docker ps -a -q -f name=${runner_name})" ]; then
echo "Removing stale container: ${runner_name}"
docker rm -f ${runner_name} || true
fi
docker run --rm --ipc=host --pid=host --net=host \
--name ${runner_name} \
-v $(pwd):/workspace \
-w /workspace \
-e fastdeploy_wheel_url=${fastdeploy_wheel_url} \
-e "FD_API_PORT=${FD_API_PORT}" \
-e "FD_ENGINE_QUEUE_PORT=${FD_ENGINE_QUEUE_PORT}" \
-e "FD_METRICS_PORT=${FD_METRICS_PORT}" \
-e "FLASK_PORT=${FLASK_PORT}" \
-e "FD_CACHE_QUEUE_PORT=${FD_CACHE_QUEUE_PORT}" \
-v "${MODEL_CACHE_DIR}:/MODELDATA" \
-v "${CACHE_DIR}/gitconfig:/etc/gitconfig:ro" \
-v "${CACHE_DIR}/.cache:/root/.cache" \
-v "${CACHE_DIR}/ConfigDir:/root/.config" \
-e TZ="Asia/Shanghai" \
--gpus '"device='"${DEVICES}"'"' ${docker_image} /bin/bash -xc '
python -m pip install --pre paddlepaddle-gpu -i https://www.paddlepaddle.org.cn/packages/nightly/cu126/
pip config set global.index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
python -m pip install ${fastdeploy_wheel_url}
python -m pip install pytest
wget https://paddle-qa.bj.bcebos.com/zhengtianyu/tools/llm-deploy-linux-amd64
chmod +x ./llm-deploy-linux-amd64
./llm-deploy-linux-amd64 -python python3.10 \
-model_name ERNIE-4.5-0.3B-Paddle \
-model_path /MODELDATA \
--skip install,model
git config --global --add safe.directory /workspace/FastDeploy
cd FastDeploy
pushd tests/ce/deploy
ps -ef | grep "${FD_CACHE_QUEUE_PORT}" | grep -v grep | awk "{print \$2}" | xargs -r kill -9
ps -ef | grep "${FD_ENGINE_QUEUE_PORT}" | grep -v grep | awk "{print \$2}" | xargs -r kill -9
python3.10 deploy.py > dd.log 2>&1 &
sleep 3
curl -X POST http://0.0.0.0:${FLASK_PORT}/start \
-H "Content-Type: application/json" \
-d "{\"--model\": \"/MODELDATA/ERNIE-4.5-0.3B-Paddle\"}"
check_service() {
local timeout=${1:-90}
local url="http://localhost:${FLASK_PORT}/wait_for_infer?timeout=${timeout}"
local resp
resp=$(curl -s -X POST "$url")
if echo "$resp" | grep -q "服务启动超时"; then
exit 8
fi
}
check_service 90
popd
pushd tests/ce/server
export URL=http://localhost:${FD_API_PORT}/v1/chat/completions
export TEMPLATE=TOKEN_LOGPROB
TEST_EXIT_CODE=0
python -m pytest -sv test_base_chat.py test_compare_top_logprobs.py test_logprobs.py test_params_boundary.py test_seed_usage.py test_stream.py test_evil_cases.py test_completions.py test_return_token_ids.py || TEST_EXIT_CODE=1
curl -X POST http://0.0.0.0:${FLASK_PORT}/switch \
-H "Content-Type: application/json" \
-d "{\"--model\": \"/MODELDATA/ERNIE-4.5-0.3B-Paddle\", \"--early-stop-config\": \"{\\\"enable_early_stop\\\":true, \\\"window_size\\\":6, \\\"threshold\\\":0.93}\"}"
check_service 90
python -m pytest -sv test_repetition_early_stop.py || TEST_EXIT_CODE=1
curl -X POST http://0.0.0.0:${FLASK_PORT}/switch \
-H "Content-Type: application/json" \
-d "{ \"--model\": \"/MODELDATA/ERNIE-4.5-0.3B-Paddle\", \"--max-concurrency\": 5, \"--max-waiting-time\": 1 }"
check_service 90
python -m pytest -sv test_max_concurrency.py || TEST_EXIT_CODE=1
curl -X POST http://0.0.0.0:${FLASK_PORT}/switch \
-H "Content-Type: application/json" \
-d "{ \"--model\": \"/MODELDATA/ERNIE-4.5-0.3B-Paddle\", \"--max-concurrency\": 5000, \"--max-waiting-time\": 1 }"
check_service 90
python -m pytest -sv test_max_waiting_time.py || TEST_EXIT_CODE=1
curl -X POST http://0.0.0.0:${FLASK_PORT}/switch \
-H "Content-Type: application/json" \
-d "{\"--model\": \"/MODELDATA/ernie-4_5-21b-a3b-bf16-paddle\", \"--config\": \"21b_mtp.yaml\", \"--enable-logprob\": \"False\"}"
check_service 180
export TEMPLATE=TOKEN_NORMAL
python -m pytest -sv test_seed_usage.py -k "not test_seed_stream" || TEST_EXIT_CODE=1
curl -X POST http://0.0.0.0:${FLASK_PORT}/switch \
-H "Content-Type: application/json" \
-d "{\"--model\": \"/MODELDATA/ernie-4_5-21b-a3b-bf16-paddle\", \"--config\": \"21b_sot.yaml\", \"--enable-logprob\": \"False\"}"
check_service 360
export TEMPLATE=TOKEN_NORMAL
python -m pytest -sv test_seed_usage.py -k "not test_seed_stream" || TEST_EXIT_CODE=1
popd
echo "TEST_EXIT_CODE=${TEST_EXIT_CODE}" >> /workspace/FastDeploy/exit_code.env
'
if [ -f ./FastDeploy/exit_code.env ]; then
source ./FastDeploy/exit_code.env
cat ./FastDeploy/exit_code.env >> $GITHUB_ENV
fi
echo "TEST_EXIT_CODE=${TEST_EXIT_CODE}"
exit ${TEST_EXIT_CODE}

View File

@@ -22,22 +22,12 @@ on:
description: "Enable nightly build mode (e.g. add date suffix to version)"
required: false
type: string
default: "OFF"
default: "ON"
FD_VERSION:
description: "FastDeploy Package Version"
required: false
type: string
default: ""
PADDLEVERSION:
description: "Paddle Version Build Use"
required: false
type: string
default: ""
PADDLE_WHL_URL:
description: "Paddle Wheel Package URL"
required: false
type: string
default: ""
UPLOAD:
description: "Upload Package"
required: false
@@ -55,7 +45,6 @@ on:
jobs:
fd-build:
runs-on: [self-hosted, GPU-Build]
timeout-minutes: 360
outputs:
wheel_path: ${{ steps.set_output.outputs.wheel_path }}
steps:
@@ -82,7 +71,7 @@ jobs:
fi
'
wget -q --no-proxy ${fd_archive_url}
wget -q ${fd_archive_url}
tar -xf FastDeploy.tar.gz
rm -rf FastDeploy.tar.gz
cd FastDeploy
@@ -96,22 +85,13 @@ jobs:
compile_arch: ${{ inputs.COMPILE_ARCH }}
fd_version: ${{ inputs.FD_VERSION }}
CACHE_DIR: ${{ inputs.CACHE_DIR }}
BRANCH_REF: ${{ github.ref_name }}
PADDLEVERSION: ${{ inputs.PADDLEVERSION }}
PADDLE_WHL_URL: ${{ inputs.PADDLE_WHL_URL }}
WITH_NIGHTLY_BUILD: ${{ inputs.WITH_NIGHTLY_BUILD }}
run: |
set -x
runner_name="${{ runner.name }}"
CARD_ID=$(echo "${runner_name}" | awk -F'-' '{print $NF}')
gpu_id=$(echo "$CARD_ID" | fold -w1 | paste -sd,)
IFS='/' read -ra parts <<< "${GITHUB_WORKSPACE}"
len=${#parts[@]}
CCACHE_DEFAULT_DIR="/$(IFS=/; echo "${parts[*]:1:$((len-5))}")"
echo "$CCACHE_DEFAULT_DIR"
CACHE_DIR="${CACHE_DIR:-$CCACHE_DEFAULT_DIR}"
CACHE_DIR="${CACHE_DIR:-$(dirname "$(dirname "${{ github.workspace }}")")}"
echo "CACHE_DIR is set to ${CACHE_DIR}"
if [ ! -f "${CACHE_DIR}/gitconfig" ]; then
touch "${CACHE_DIR}/gitconfig"
@@ -129,10 +109,6 @@ jobs:
-e "COMPILE_ARCH=${compile_arch}" \
-e "FD_VERSION=${fd_version}" \
-e "WITH_NIGHTLY_BUILD=${WITH_NIGHTLY_BUILD}" \
-e "PADDLEVERSION=${PADDLEVERSION}" \
-e "PADDLE_WHL_URL=${PADDLE_WHL_URL}" \
-e "BRANCH_REF=${BRANCH_REF}" \
-e "CCACHE_MAXSIZE=50G" \
--gpus "\"device=${gpu_id}\"" ${docker_image} /bin/bash -c '
if [[ -n "${FD_VERSION}" ]]; then
export FASTDEPLOY_VERSION=${FD_VERSION}
@@ -140,7 +116,6 @@ jobs:
fi
git config --global --add safe.directory /workspace/FastDeploy
chown -R $(whoami) /workspace/FastDeploy
cd FastDeploy
if [[ "${WITH_NIGHTLY_BUILD}" == "ON" ]];then
GIT_COMMIT_TIME=$(git --no-pager show -s --format=%ci HEAD)
@@ -149,15 +124,7 @@ jobs:
echo "Date Only: $DATE_ONLY"
export FASTDEPLOY_VERSION="${FASTDEPLOY_VERSION}.dev${DATE_ONLY}"
fi
# 针对不同分支和tag使用不同的PaddlePaddle安装包
if [[ "${PADDLE_WHL_URL}" != "" ]];then
python -m pip install ${PADDLE_WHL_URL}
elif [[ "${PADDLEVERSION}" != "" ]];then
python -m pip install paddlepaddle-gpu==${PADDLEVERSION} -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
else
python -m pip install --pre paddlepaddle-gpu -i https://www.paddlepaddle.org.cn/packages/nightly/cu126/
fi
python -m pip install paddlepaddle-gpu==3.1.1 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
pip config set global.index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
python -m pip install --upgrade pip

View File

@@ -1,73 +0,0 @@
name: Docker Build
description: "FastDeploy CI Image Build"
on:
workflow_call:
inputs:
CI_DOCKER_IMAGE_NAME:
description: "Build Images"
required: true
type: string
default: "ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:cuda126-py310"
FASTDEPLOY_ARCHIVE_URL:
description: "URL of the compressed FastDeploy code archive."
required: true
type: string
DOCKER_IMAGE_NAME:
description: "Build Images"
required: false
type: string
default: "ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate"
outputs:
docker_name_precheck:
description: "Output path of the generated wheel"
value: ${{ jobs.docker_build.outputs.docker_name_precheck }}
jobs:
docker_build:
runs-on: [self-hosted, Docker-Build]
outputs:
docker_name_precheck: ${{ steps.docker_build.outputs.docker_name_precheck }}
steps:
- name: Docker Build
id: docker_build
shell: bash
env:
docker_image_name: ${{ inputs.CI_DOCKER_IMAGE_NAME }}
docker_image: ${{ inputs.DOCKER_IMAGE_NAME }}
fd_archive_url: ${{ inputs.FASTDEPLOY_ARCHIVE_URL }}
run: |
set -x
REPO="https://github.com/${{ github.repository }}.git"
FULL_REPO="${{ github.repository }}"
REPO_NAME="${FULL_REPO##*/}"
BASE_BRANCH="${{ github.base_ref }}"
# Clean the repository directory before starting
docker run --rm --net=host -v $(pwd):/workspace -w /workspace \
-e "REPO_NAME=${REPO_NAME}" \
${docker_image} /bin/bash -c '
if [ -d ${REPO_NAME} ]; then
echo "Directory ${REPO_NAME} exists, removing it..."
rm -rf ${REPO_NAME}*
fi
'
wget -q --no-proxy ${fd_archive_url}
tar -xf FastDeploy.tar.gz
rm -rf FastDeploy.tar.gz
cd FastDeploy
git config --global user.name "FastDeployCI"
git config --global user.email "fastdeploy_ci@example.com"
git log -n 3 --oneline
# Docker Build
cd tools/dockerfile/
set -e
cp ../../requirements.txt ./
cp ../../scripts/unittest_requirement.txt ./
docker build -t ${docker_image_name} -f Dockerfile.ci . \
--network host \
--no-cache
docker push ${docker_image_name}
echo "docker_name_precheck=${docker_image_name}" >> $GITHUB_OUTPUT

View File

@@ -68,7 +68,7 @@ jobs:
branch_name=${{ github.ref_name }}
target_path=paddle-github-action/BRANCH/FastDeploy/${branch_name}/${commit_id}
fi
wget -O bos_tools.py -q --no-proxy --no-check-certificate https://paddle-qa.bj.bcebos.com/CodeSync/develop/PaddlePaddle/PaddleTest/tools/bos_tools.py
wget -q --no-proxy --no-check-certificate https://paddle-qa.bj.bcebos.com/CodeSync/develop/PaddlePaddle/PaddleTest/tools/bos_tools.py
push_file=$(realpath bos_tools.py)
python -m pip install bce-python-sdk==0.9.29
ls

View File

@@ -32,7 +32,6 @@ on:
jobs:
run_tests_logprob:
runs-on: [self-hosted, GPU-h20-1Cards]
timeout-minutes: 60
steps:
- name: Code Prepare
shell: bash
@@ -40,7 +39,6 @@ jobs:
docker_image: ${{ inputs.DOCKER_IMAGE }}
paddletest_archive_url: ${{ inputs.PADDLETEST_ARCHIVE_URL }}
run: |
docker pull ${docker_image}
# Clean the repository directory before starting
docker run --rm --net=host -v $(pwd):/workspace -w /workspace \
-e "REPO_NAME=${REPO_NAME}" \
@@ -48,7 +46,7 @@ jobs:
${docker_image} /bin/bash -c '
rm -rf /workspace/*
'
wget -q --no-proxy ${paddletest_archive_url}
wget -q ${paddletest_archive_url}
tar -xf PaddleTest.tar.gz
rm -rf PaddleTest.tar.gz
cd PaddleTest
@@ -72,14 +70,12 @@ jobs:
FD_API_PORT=$((42088 + DEVICE_PORT * 100))
FD_ENGINE_QUEUE_PORT=$((42058 + DEVICE_PORT * 100))
FD_METRICS_PORT=$((42078 + DEVICE_PORT * 100))
FD_CACHE_QUEUE_PORT=$((42098 + DEVICE_PORT * 100))
echo "Test ENV Parameter:"
echo "========================================================="
echo "FLASK_PORT=${FLASK_PORT}"
echo "FD_API_PORT=${FD_API_PORT}"
echo "FD_ENGINE_QUEUE_PORT=${FD_ENGINE_QUEUE_PORT}"
echo "FD_METRICS_PORT=${FD_METRICS_PORT}"
echo "FD_CACHE_QUEUE_PORT=${FD_CACHE_QUEUE_PORT}"
echo "DEVICES=${DEVICES}"
echo "========================================================="
@@ -93,7 +89,7 @@ jobs:
exit 1
fi
PORTS=($FLASK_PORT $FD_API_PORT $FD_ENGINE_QUEUE_PORT $FD_METRICS_PORT $FD_CACHE_QUEUE_PORT)
PORTS=($FLASK_PORT $FD_API_PORT $FD_ENGINE_QUEUE_PORT $FD_METRICS_PORT)
LOG_FILE="./port_cleanup_$(date +%Y%m%d_%H%M%S).log"
echo "==== LOG_FILE is ${LOG_FILE} ===="
@@ -118,6 +114,7 @@ jobs:
echo "Removing stale container: ${runner_name}"
docker rm -f ${runner_name} || true
fi
docker run --rm --ipc=host --pid=host --net=host \
--name ${runner_name} \
-v $(pwd):/workspace \
@@ -126,7 +123,6 @@ jobs:
-e "FD_API_PORT=${FD_API_PORT}" \
-e "FD_ENGINE_QUEUE_PORT=${FD_ENGINE_QUEUE_PORT}" \
-e "FD_METRICS_PORT=${FD_METRICS_PORT}" \
-e "FD_CACHE_QUEUE_PORT=${FD_CACHE_QUEUE_PORT}" \
-e "FLASK_PORT=${FLASK_PORT}" \
-v "${MODEL_CACHE_DIR}:/MODELDATA" \
-v "${CACHE_DIR}/gitconfig:/etc/gitconfig:ro" \
@@ -134,7 +130,7 @@ jobs:
-v "${CACHE_DIR}/ConfigDir:/root/.config" \
-e TZ="Asia/Shanghai" \
--gpus '"device='"${DEVICES}"'"' ${docker_image} /bin/bash -xc '
python -m pip install --pre paddlepaddle-gpu -i https://www.paddlepaddle.org.cn/packages/nightly/cu126/
python -m pip install paddlepaddle-gpu==3.1.1 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
pip config set global.index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
@@ -145,11 +141,9 @@ jobs:
./llm-deploy-linux-amd64 -python python3.10 \
-model_name ERNIE-4.5-0.3B-Paddle \
-model_path /MODELDATA \
--skip install,model
--skip install
cd PaddleTest/framework/ServeTest
ps -ef | grep "${FD_CACHE_QUEUE_PORT}" | grep -v grep | awk "{print \$2}" | xargs -r kill -9
ps -ef | grep "${FD_ENGINE_QUEUE_PORT}" | grep -v grep | awk "{print \$2}" | xargs -r kill -9
python3.10 deploy.py > dd.log 2>&1 &
sleep 3
curl -X POST http://0.0.0.0:${FLASK_PORT}/start \
@@ -157,10 +151,6 @@ jobs:
-d "{\"--model\": \"/MODELDATA/ERNIE-4.5-0.3B-Paddle\"}"
curl -X POST http://localhost:${FLASK_PORT}/wait_for_infer?timeout=90
curl -s -o /dev/null -w "%{http_code}" -m 2 "http://0.0.0.0:${FD_API_PORT}/health"
curl -X POST "http://0.0.0.0:${FD_API_PORT}/v1/chat/completions" \
-H "Content-Type: application/json" \
-d "{\"messages\": [{\"role\": \"user\", \"content\": \"1+1=?\"}], \"logprobs\": true}"
set +e
rm -rf ./baseline_output
cp -r baseline/ERNIE-4.5-0.3B-Paddle ./baseline_output

View File

@@ -27,10 +27,13 @@ on:
type: string
default: ""
concurrency:
group: ${{ github.event.pull_request.number }}
cancel-in-progress: true
jobs:
run_ce_cases:
runs-on: [self-hosted, PRE_CE_RUN_2Card]
timeout-minutes: 60
steps:
- name: Print current runner name
run: |
@@ -46,7 +49,7 @@ jobs:
FULL_REPO="${{ github.repository }}"
REPO_NAME="${FULL_REPO##*/}"
BASE_BRANCH="${{ github.base_ref }}"
docker pull ${docker_image}
# Clean the repository directory before starting
docker run --rm --net=host -v $(pwd):/workspace -w /workspace \
-e "REPO_NAME=${REPO_NAME}" \
@@ -57,7 +60,7 @@ jobs:
fi
'
wget -q --no-proxy ${fd_archive_url}
wget -q ${fd_archive_url}
tar -xf FastDeploy.tar.gz
rm -rf FastDeploy.tar.gz
cd FastDeploy
@@ -81,17 +84,12 @@ jobs:
FD_API_PORT=$((42088 + DEVICE_PORT * 100))
FD_ENGINE_QUEUE_PORT=$((42058 + DEVICE_PORT * 100))
FD_METRICS_PORT=$((42078 + DEVICE_PORT * 100))
FD_CACHE_QUEUE_PORT=$((42098 + DEVICE_PORT * 100))
FD_ZMQ_RECV_REQUEST_SERVER_PORT=$((42048 + DEVICE_PORT * 100))
FD_ZMQ_SEND_RESPONSE_SERVER_PORT=$((42038 + DEVICE_PORT * 100))
FD_ZMQ_CONTROL_CMD_SERVER_PORTS=$((42028 + DEVICE_PORT * 100))
echo "Test ENV Parameter:"
echo "========================================================="
echo "FLASK_PORT=${FLASK_PORT}"
echo "FD_API_PORT=${FD_API_PORT}"
echo "FD_ENGINE_QUEUE_PORT=${FD_ENGINE_QUEUE_PORT}"
echo "FD_METRICS_PORT=${FD_METRICS_PORT}"
echo "FD_CACHE_QUEUE_PORT=${FD_CACHE_QUEUE_PORT}"
echo "DEVICES=${DEVICES}"
echo "========================================================="
@@ -101,7 +99,7 @@ jobs:
touch "${CACHE_DIR}/gitconfig"
fi
PORTS=($FLASK_PORT $FD_API_PORT $FD_ENGINE_QUEUE_PORT $FD_METRICS_PORT $FD_CACHE_QUEUE_PORT)
PORTS=($FLASK_PORT $FD_API_PORT $FD_ENGINE_QUEUE_PORT $FD_METRICS_PORT)
LOG_FILE="./port_cleanup_$(date +%Y%m%d_%H%M%S).log"
echo "==== LOG_FILE is ${LOG_FILE} ===="
@@ -139,13 +137,12 @@ jobs:
-e "FD_API_PORT=${FD_API_PORT}" \
-e "FD_ENGINE_QUEUE_PORT=${FD_ENGINE_QUEUE_PORT}" \
-e "FD_METRICS_PORT=${FD_METRICS_PORT}" \
-e "FD_CACHE_QUEUE_PORT=${FD_CACHE_QUEUE_PORT}" \
-e "FLASK_PORT=${FLASK_PORT}" \
-e "fd_wheel_url=${fd_wheel_url}" \
--gpus "\"device=${DEVICES}\"" ${docker_image} /bin/bash -c '
git config --global --add safe.directory /workspace/FastDeploy
cd FastDeploy
python -m pip install --pre paddlepaddle-gpu -i https://www.paddlepaddle.org.cn/packages/nightly/cu126/
python -m pip install paddlepaddle-gpu==3.1.1 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
python -m pip install ${fd_wheel_url}
bash scripts/run_pre_ce.sh
'

View File

@@ -1,170 +0,0 @@
name: Stable Test
description: "Run Stable Tests"
on:
workflow_call:
inputs:
DOCKER_IMAGE:
description: "Build Images"
required: true
type: string
default: "ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:cuda126-py310"
FASTDEPLOY_ARCHIVE_URL:
description: "URL of the compressed FastDeploy code archive."
required: true
type: string
FASTDEPLOY_WHEEL_URL:
description: "URL of the FastDeploy Wheel."
required: true
type: string
CACHE_DIR:
description: "Cache Dir Use"
required: false
type: string
default: ""
MODEL_CACHE_DIR:
description: "Cache Dir Use"
required: false
type: string
default: ""
jobs:
stable_tests:
runs-on: [self-hosted, GPU-h1z1-2Cards]
timeout-minutes: 60
steps:
- name: Code Prepare
shell: bash
env:
docker_image: ${{ inputs.DOCKER_IMAGE }}
fd_archive_url: ${{ inputs.FASTDEPLOY_ARCHIVE_URL }}
run: |
set -x
REPO="https://github.com/${{ github.repository }}.git"
FULL_REPO="${{ github.repository }}"
REPO_NAME="${FULL_REPO##*/}"
BASE_BRANCH="${{ github.base_ref }}"
docker pull ${docker_image}
# Clean the repository directory before starting
docker run --rm --net=host -v $(pwd):/workspace -w /workspace \
-e "REPO_NAME=${REPO_NAME}" \
${docker_image} /bin/bash -c '
if [ -d ${REPO_NAME} ]; then
echo "Directory ${REPO_NAME} exists, removing it..."
rm -rf ${REPO_NAME}*
fi
'
wget -q --no-proxy ${fd_archive_url}
tar -xf FastDeploy.tar.gz
rm -rf FastDeploy.tar.gz
cd FastDeploy
git config --global user.name "FastDeployCI"
git config --global user.email "fastdeploy_ci@example.com"
git log -n 3 --oneline
- name: Run FastDeploy Stable Tests
shell: bash
env:
docker_image: ${{ inputs.DOCKER_IMAGE }}
fastdeploy_wheel_url: ${{ inputs.FASTDEPLOY_WHEEL_URL }}
CACHE_DIR: ${{ inputs.CACHE_DIR }}
MODEL_CACHE_DIR: ${{ inputs.MODEL_CACHE_DIR }}
run: |
runner_name="${{ runner.name }}"
CARD_ID=$(echo "${runner_name}" | awk -F'-' '{print $NF}')
DEVICES=$(echo "$CARD_ID" | fold -w1 | paste -sd,)
DEVICE_PORT=$(echo "$DEVICES" | cut -d',' -f1)
FLASK_PORT=$((42068 + DEVICE_PORT * 100))
FD_API_PORT=$((42088 + DEVICE_PORT * 100))
FD_ENGINE_QUEUE_PORT=$((42058 + DEVICE_PORT * 100))
FD_METRICS_PORT=$((42078 + DEVICE_PORT * 100))
FD_CACHE_QUEUE_PORT=$((42038 + DEVICE_PORT * 100))
FD_INFERENCE_MSG_QUEUE_ID=$(( 42048 + DEVICE_PORT * 100))
echo "Test ENV Parameter:"
echo "========================================================="
echo "FLASK_PORT=${FLASK_PORT}"
echo "FD_API_PORT=${FD_API_PORT}"
echo "FD_ENGINE_QUEUE_PORT=${FD_ENGINE_QUEUE_PORT}"
echo "FD_METRICS_PORT=${FD_METRICS_PORT}"
echo "FD_INFERENCE_MSG_QUEUE_ID=${FD_INFERENCE_MSG_QUEUE_ID}"
echo "FD_CACHE_QUEUE_PORT=${FD_CACHE_QUEUE_PORT}"
echo "DEVICES=${DEVICES}"
echo "========================================================="
CACHE_DIR="${CACHE_DIR:-$(dirname "$(dirname "${{ github.workspace }}")")}"
echo "CACHE_DIR is set to ${CACHE_DIR}"
if [ ! -f "${CACHE_DIR}/gitconfig" ]; then
touch "${CACHE_DIR}/gitconfig"
fi
if [ ! -d "${MODEL_CACHE_DIR}" ]; then
echo "Error: MODEL_CACHE_DIR '${MODEL_CACHE_DIR}' does not exist."
exit 1
fi
PORTS=($FLASK_PORT $FD_API_PORT $FD_ENGINE_QUEUE_PORT $FD_METRICS_PORT)
LOG_FILE="./port_cleanup_$(date +%Y%m%d_%H%M%S).log"
echo "==== LOG_FILE is ${LOG_FILE} ===="
echo "==== PORT CLEAN BEFORE TASK RUN ====" | tee -a $LOG_FILE
for port in "${PORTS[@]}"; do
PIDS=$(lsof -t -i :$port || true)
if [ -n "$PIDS" ]; then
echo "Port $port is occupied by PID(s): $PIDS" | tee -a $LOG_FILE
echo "$PIDS" | xargs -r kill -9
echo "Port $port cleared" | tee -a $LOG_FILE
else
echo "Port $port is free" | tee -a $LOG_FILE
fi
done
echo "==== PORT CLEAN COMPLETE ====" | tee -a $LOG_FILE
echo "========================================================="
echo "Ensuring no stale container named ${runner_name} ..."
if [ "$(docker ps -a -q -f name=${runner_name})" ]; then
echo "Removing stale container: ${runner_name}"
docker rm -f ${runner_name} || true
fi
docker run --rm --ipc=host --pid=host --net=host \
--name ${runner_name} \
-v $(pwd):/workspace \
-w /workspace \
-e fastdeploy_wheel_url=${fastdeploy_wheel_url} \
-e "FD_API_PORT=${FD_API_PORT}" \
-e "FD_ENGINE_QUEUE_PORT=${FD_ENGINE_QUEUE_PORT}" \
-e "FD_METRICS_PORT=${FD_METRICS_PORT}" \
-e "FLASK_PORT=${FLASK_PORT}" \
-e "FD_INFERENCE_MSG_QUEUE_ID=${FD_INFERENCE_MSG_QUEUE_ID}" \
-e "FD_CACHE_QUEUE_PORT=${FD_CACHE_QUEUE_PORT}" \
-v "${MODEL_CACHE_DIR}:/MODELDATA" \
-v "${CACHE_DIR}/gitconfig:/etc/gitconfig:ro" \
-v "${CACHE_DIR}/.cache:/root/.cache" \
-v "${CACHE_DIR}/ConfigDir:/root/.config" \
-e TZ="Asia/Shanghai" \
--gpus '"device='"${DEVICES}"'"' ${docker_image} /bin/bash -xc '
python -m pip install --pre paddlepaddle-gpu -i https://www.paddlepaddle.org.cn/packages/nightly/cu126/
pip config set global.index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
python -m pip install ${fastdeploy_wheel_url}
python -m pip install pytest
git config --global --add safe.directory /workspace/FastDeploy
cd FastDeploy
TEST_EXIT_CODE=0
pushd tests/ce/stable_cases
bash launch_model.sh /MODELDATA
bash run.sh || TEST_EXIT_CODE=1
popd
echo "TEST_EXIT_CODE=${TEST_EXIT_CODE}" >> /workspace/FastDeploy/exit_code.env
'
if [ -f ./FastDeploy/exit_code.env ]; then
source ./FastDeploy/exit_code.env
cat ./FastDeploy/exit_code.env >> $GITHUB_ENV
fi
echo "TEST_EXIT_CODE=${TEST_EXIT_CODE}"
exit ${TEST_EXIT_CODE}

View File

@@ -1,4 +1,4 @@
name: Coverage Check
name: Run FastDeploy Unit Tests and Coverage
description: "Run FastDeploy Unit Tests and Coverage"
on:
@@ -27,23 +27,10 @@ on:
required: false
type: string
default: ""
secrets:
github-token:
required: true
jobs:
check_cov_skip:
uses: ./.github/workflows/check-bypass.yml
secrets:
github-token: ${{ secrets.github-token }}
with:
workflow-name: coverage
run_tests_with_coverage:
runs-on: [self-hosted, GPU-h1z1-2Cards]
timeout-minutes: 90
needs: check_cov_skip
if: needs.check_cov_skip.outputs.can-skip != 'true'
outputs:
diff_cov_file_url: ${{ steps.cov_upload.outputs.diff_cov_file_url }}
unittest_failed_url: ${{ steps.cov_upload.outputs.unittest_failed_url }}
@@ -60,7 +47,7 @@ jobs:
FULL_REPO="${{ github.repository }}"
REPO_NAME="${FULL_REPO##*/}"
BASE_BRANCH="${{ github.base_ref }}"
docker pull ${docker_image}
# Clean the repository directory before starting
docker run --rm --net=host -v $(pwd):/workspace -w /workspace \
-e "REPO_NAME=${REPO_NAME}" \
@@ -71,7 +58,7 @@ jobs:
fi
'
wget -q --no-proxy ${fd_archive_url}
wget -q ${fd_archive_url}
tar -xf FastDeploy.tar.gz
rm -rf FastDeploy.tar.gz
cd FastDeploy
@@ -86,13 +73,8 @@ jobs:
CACHE_DIR: ${{ inputs.CACHE_DIR }}
BASE_REF: ${{ github.event.pull_request.base.ref }}
MODEL_CACHE_DIR: ${{ inputs.MODEL_CACHE_DIR }}
IS_PR: ${{ github.event_name == 'pull_request' }}
run: |
if [[ "$IS_PR" == "true" ]]; then
echo "Running on PR"
else
echo "Not a PR"
fi
set -x
runner_name="${{ runner.name }}"
CARD_ID=$(echo "${runner_name}" | awk -F'-' '{print $NF}')
DEVICES=$(echo "$CARD_ID" | fold -w1 | paste -sd,)
@@ -102,14 +84,12 @@ jobs:
FD_API_PORT=$((42088 + DEVICE_PORT * 100))
FD_ENGINE_QUEUE_PORT=$((42058 + DEVICE_PORT * 100))
FD_METRICS_PORT=$((42078 + DEVICE_PORT * 100))
FD_CACHE_QUEUE_PORT=$((42098 + DEVICE_PORT * 100))
echo "Test ENV Parameter:"
echo "========================================================="
echo "FLASK_PORT=${FLASK_PORT}"
echo "FD_API_PORT=${FD_API_PORT}"
echo "FD_ENGINE_QUEUE_PORT=${FD_ENGINE_QUEUE_PORT}"
echo "FD_METRICS_PORT=${FD_METRICS_PORT}"
echo "FD_CACHE_QUEUE_PORT=${FD_CACHE_QUEUE_PORT}"
echo "DEVICES=${DEVICES}"
echo "========================================================="
@@ -119,7 +99,7 @@ jobs:
touch "${CACHE_DIR}/gitconfig"
fi
PORTS=($FLASK_PORT $FD_API_PORT $FD_ENGINE_QUEUE_PORT $FD_METRICS_PORT $FD_CACHE_QUEUE_PORT)
PORTS=($FLASK_PORT $FD_API_PORT $FD_ENGINE_QUEUE_PORT $FD_METRICS_PORT)
LOG_FILE="./port_cleanup_$(date +%Y%m%d_%H%M%S).log"
echo "==== LOG_FILE is ${LOG_FILE} ===="
@@ -158,140 +138,79 @@ jobs:
-e "FD_ENGINE_QUEUE_PORT=${FD_ENGINE_QUEUE_PORT}" \
-e "FD_METRICS_PORT=${FD_METRICS_PORT}" \
-e "FLASK_PORT=${FLASK_PORT}" \
-e "FD_CACHE_QUEUE_PORT=${FD_CACHE_QUEUE_PORT}" \
-e TZ="Asia/Shanghai" \
-e "fd_wheel_url=${fd_wheel_url}" \
-e "BASE_REF=${BASE_REF}" \
-e "IS_PR=${IS_PR}" \
--gpus "\"device=${DEVICES}\"" ${docker_image} /bin/bash -c '
git config --global --add safe.directory /workspace/FastDeploy
cd FastDeploy
git diff origin/${BASE_REF}..HEAD --unified=0 > diff.txt
python -m pip install --pre paddlepaddle-gpu -i https://www.paddlepaddle.org.cn/packages/nightly/cu126/
python -m pip install paddlepaddle-gpu==3.1.1 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
pip config set global.extra-index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
python -m pip install -r scripts/unittest_requirement.txt
python -m pip install coverage
python -m pip install diff-cover
python -m pip install ${fd_wheel_url}
rm -rf fastdeploy
# coverage subprocess use
python -m pip install ${fd_wheel_url} --no-deps --target=/workspace/FastDeploy
export PYTHONPATH=/workspace/FastDeploy/
if [ -d "tests/plugins" ]; then
cd tests/plugins
if [ -d "test/plugins" ]; then
cd test/plugins
python setup.py install
cd ../..
else
echo "Warning: tests/plugins directory not found, skipping setup.py install"
echo "Warning: test/plugins directory not found, skipping setup.py install"
fi
export COVERAGE_FILE=/workspace/FastDeploy/coveragedata/.coverage
export COVERAGE_RCFILE=/workspace/FastDeploy/scripts/.coveragerc
TEST_EXIT_CODE=0
bash scripts/coverage_run.sh || TEST_EXIT_CODE=8
git diff origin/${BASE_REF}..HEAD --unified=0 > diff.txt
echo "TEST_EXIT_CODE=${TEST_EXIT_CODE}" >> exit_code.env
coverage combine coveragedata/ || echo "No data to combine"
coverage report
coverage combine coveragedata/
coverage xml -o python_coverage_all.xml
COVERAGE_EXIT_CODE=0
if [[ "$IS_PR" == "true" ]]; then
echo "Running diff coverage for PR..."
diff-cover python_coverage_all.xml --diff-file=diff.txt --fail-under=80 --json-report diff_coverage.json || COVERAGE_EXIT_CODE=9
python scripts/generate_diff_coverage_xml.py diff.txt python_coverage_all.xml
else
echo "Running full coverage"
coverage report -m > full_coverage_report.txt
python scripts/generate_full_coverage_csv.py full_coverage_report.txt full_coverage_report.csv
fi
diff-cover python_coverage_all.xml --diff-file=diff.txt --fail-under=80 --json-report diff_coverage.json || COVERAGE_EXIT_CODE=9
echo "COVERAGE_EXIT_CODE=${COVERAGE_EXIT_CODE}" >> exit_code.env
python scripts/generate_diff_coverage_xml.py diff.txt python_coverage_all.xml
'
if [ -f FastDeploy/exit_code.env ]; then
cat FastDeploy/exit_code.env >> $GITHUB_ENV
fi
- name: Upload coverage and unit test results to BOS
- name: Upload unit resule and diff coverage to bos
id: cov_upload
shell: bash
env:
IS_PR: ${{ github.event_name == 'pull_request' }}
GITHUB_SHA: ${{ github.sha }}
BRANCH: ${{ github.ref_name }}
PR_COMMIT_SHA: ${{ github.event.pull_request.head.sha }}
PR_NUMBER: ${{ github.event.pull_request.number }}
run: |
cd FastDeploy
python -m pip install -q bce-python-sdk==0.9.29
wget -q --no-proxy --no-check-certificate \
https://paddle-qa.bj.bcebos.com/CodeSync/develop/PaddlePaddle/PaddleTest/tools/bos_tools.py \
-O bos_tools.py
commit_id=${{ github.event.pull_request.head.sha }}
pr_num=${{ github.event.pull_request.number }}
target_path=paddle-github-action/PR/FastDeploy/${pr_num}/${commit_id}/SM${compile_arch//,/_}
wget -q --no-proxy --no-check-certificate https://paddle-qa.bj.bcebos.com/CodeSync/develop/PaddlePaddle/PaddleTest/tools/bos_tools.py
push_file=$(realpath bos_tools.py)
if [[ "$IS_PR" == "true" ]]; then
commit_id=${PR_COMMIT_SHA}
pr_num=${PR_NUMBER}
target_path=paddle-github-action/PR/FastDeploy/${pr_num}/${commit_id}/SM${compile_arch//,/_}
elif [[ "${{ github.ref_type }}" == "tag" ]]; then
commit_id=${{ github.sha }}
tag_name=${{ github.ref_name }}
target_path=paddle-github-action/TAG/FastDeploy/${tag_name}/${commit_id}/SM${compile_arch//,/_}
target_path_latest=paddle-github-action/TAG/FastDeploy/${tag_name}/latest/SM${compile_arch//,/_}
target_path_stripped_latest="${target_path_latest#paddle-github-action/}"
else
commit_id=${{ github.sha }}
branch_name=${{ github.ref_name }}
target_path=paddle-github-action/BRANCH/FastDeploy/${branch_name}/${commit_id}/SM${compile_arch//,/_}
target_path_latest=paddle-github-action/BRANCH/FastDeploy/${branch_name}/latest/SM${compile_arch//,/_}
target_path_stripped_latest="${target_path_latest#paddle-github-action/}"
python -m pip install bce-python-sdk==0.9.29
diff_cov_file="diff_coverage.xml"
if [ -f ${diff_cov_file} ];then
python ${push_file} ${diff_cov_file} ${target_path}/CoverageData
target_path_stripped="${target_path#paddle-github-action/}"
DIFF_COV_FILE_URL=https://paddle-github-action.bj.bcebos.com/${target_path_stripped}/CoverageData/${diff_cov_file}
echo "diff_cov_file_url=${DIFF_COV_FILE_URL}" >> $GITHUB_OUTPUT
echo "diff_cov_file_url=${DIFF_COV_FILE_URL}" >> $GITHUB_ENV
fi
target_path_stripped="${target_path#paddle-github-action/}"
if [[ "$IS_PR" == "true" ]]; then
diff_cov_file="diff_coverage.xml"
if [ -f ${diff_cov_file} ]; then
python ${push_file} ${diff_cov_file} ${target_path}/CoverageData
DIFF_COV_FILE_URL=https://paddle-github-action.bj.bcebos.com/${target_path_stripped}/CoverageData/${diff_cov_file}
echo "diff_cov_file_url=${DIFF_COV_FILE_URL}" >> $GITHUB_OUTPUT
echo "diff_cov_file_url=${DIFF_COV_FILE_URL}" >> $GITHUB_ENV
fi
diff_cov_result_json="diff_coverage.json"
if [ -f ${diff_cov_result_json} ]; then
python ${push_file} ${diff_cov_result_json} ${target_path}/CoverageData
DIFF_COV_JSON_URL=https://paddle-github-action.bj.bcebos.com/${target_path_stripped}/CoverageData/${diff_cov_result_json}
echo "diff_cov_result_json_url=${DIFF_COV_JSON_URL}" >> $GITHUB_OUTPUT
echo "diff_cov_result_json_url=${DIFF_COV_JSON_URL}" >> $GITHUB_ENV
fi
diff_cov_result_json="diff_coverage.json"
if [ -f ${diff_cov_result_json} ];then
python ${push_file} ${diff_cov_result_json} ${target_path}/CoverageData
target_path_stripped="${target_path#paddle-github-action/}"
DIFF_COV_JSON_URL=https://paddle-github-action.bj.bcebos.com/${target_path_stripped}/CoverageData/${diff_cov_result_json}
echo "diff_cov_result_json_url=${DIFF_COV_JSON_URL}" >> $GITHUB_OUTPUT
echo "diff_cov_result_json_url=${DIFF_COV_JSON_URL}" >> $GITHUB_ENV
fi
HAS_FAILED_TESTS=false
unittest_result="failed_tests.log"
if [ -s ${unittest_result} ]; then
HAS_FAILED_TESTS=true
unittest_result="test/failed_tests.log"
if [ -s ${unittest_result} ];then
python ${push_file} ${unittest_result} ${target_path}/UnitTestResult
target_path_stripped="${target_path#paddle-github-action/}"
UNIT_TEST_RESULT_URL=https://paddle-github-action.bj.bcebos.com/${target_path_stripped}/UnitTestResult/${unittest_result}
echo "unittest_failed_url=${UNIT_TEST_RESULT_URL}" >> $GITHUB_OUTPUT
echo "unittest_failed_url=${UNIT_TEST_RESULT_URL}" >> $GITHUB_ENV
fi
if [[ "$IS_PR" != "true" ]]; then
full_cov_file="full_coverage_report.txt"
full_cov_csv="full_coverage_report.csv"
if [ -f ${full_cov_file} ]; then
python ${push_file} ${full_cov_file} ${target_path}/CoverageData
python ${push_file} ${full_cov_file} ${target_path_latest}/CoverageData
FULL_COV_FILE_URL=https://paddle-github-action.bj.bcebos.com/${target_path_stripped}/CoverageData/${full_cov_file}
echo "full_coverage_report_url=${FULL_COV_FILE_URL}" >> $GITHUB_OUTPUT
echo "full_coverage_report_url=${FULL_COV_FILE_URL}" >> $GITHUB_ENV
fi
if [ "$HAS_FAILED_TESTS" = false ] && [ -f ${full_cov_csv} ]; then
python ${push_file} ${full_cov_csv} ${target_path}/CoverageData
python ${push_file} ${full_cov_csv} ${target_path_latest}/CoverageData
FULL_COV_CSV_URL=https://paddle-github-action.bj.bcebos.com/${target_path_stripped}/CoverageData/${full_cov_csv}
echo "full_coverage_csv_url=${FULL_COV_CSV_URL}" >> $GITHUB_OUTPUT
echo "full_coverage_csv_url=${FULL_COV_CSV_URL}" >> $GITHUB_ENV
fi
fi
- name: Check Unit Test Success
shell: bash
run: |
@@ -314,7 +233,6 @@ jobs:
echo "All tests passed"
- name: Verify Code Coverage Threshold (80%)
if: ${{ github.event_name == 'pull_request' }}
shell: bash
run: |
cd FastDeploy
@@ -344,18 +262,12 @@ jobs:
needs: run_tests_with_coverage
if: always()
runs-on: ubuntu-latest
timeout-minutes: 15
env:
fd_archive_url: ${{ inputs.FASTDEPLOY_ARCHIVE_URL }}
steps:
- name: coverage diff file download
shell: bash
env:
diff_cov_file_url: ${{ needs.run_tests_with_coverage.outputs.diff_cov_file_url }}
run: |
wget -q --no-proxy ${fd_archive_url}
tar -xf FastDeploy.tar.gz
cd FastDeploy
if [ -z "${diff_cov_file_url}" ]; then
echo "No diff coverage file URL provided."
exit 0
@@ -365,9 +277,6 @@ jobs:
if: ${{ needs.run_tests_with_coverage.outputs.diff_cov_file_url != null && needs.run_tests_with_coverage.outputs.diff_cov_file_url != '' }}
uses: codecov/codecov-action@v5
with:
files: ./FastDeploy/diff_coverage.xml
files: ./diff_coverage.xml
name: python diff coverage
verbose: true
disable_search: true
commit_parent: false
flags: diff

View File

@@ -6,9 +6,6 @@ on:
- develop
- 'release/*'
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
jobs:
Approval:
name: Approval

View File

@@ -1,248 +0,0 @@
name: CE Compile Job
on:
workflow_dispatch:
push:
branches:
- develop
- 'release/*'
permissions: read-all
concurrency:
group: CE-Job-${{ github.ref }}-${{ github.sha }}
cancel-in-progress: true
jobs:
ce_job_pre_check:
runs-on: ubuntu-latest
env:
COMPILE_BRANCH: ${{ vars.COMPILE_BRANCH }}
CE_COMPILE_SELECTION: ${{ vars.CE_COMPILE_SELECTION }}
COMPILE_USE_PADDLE_WHL_URL_MAPPINGS: ${{ vars.COMPILE_USE_PADDLE_WHL_URL_MAPPINGS }}
outputs:
branch_match: ${{ steps.set_output.outputs.branch_match }}
compile_use_paddle_whl_url: ${{ steps.set_output.outputs.compile_use_paddle_whl_url }}
sm8689_match: ${{ steps.set_output.outputs.sm8689_match }}
sm8090_match: ${{ steps.set_output.outputs.sm8090_match }}
steps:
- name: Set Version
id: set_output
env:
COMPILE_BRANCH: ${{ env.COMPILE_BRANCH }}
CE_COMPILE_SELECTION: ${{ env.CE_COMPILE_SELECTION }}
COMPILE_USE_PADDLE_WHL_URL_MAPPINGS: ${{ env.COMPILE_USE_PADDLE_WHL_URL_MAPPINGS }}
GITHUB_REF_NAME: ${{ github.ref_name }}
run: |
# 选择要触发编译任务的分支 done
# 选择指定分支要编译的任务 8090或者8689
# 指定分支编译要使用的Paddle的安装包,默认使用nightly最新的
IFS=',' read -ra BRANCHES <<< "$COMPILE_BRANCH"
MATCH=false
for b in "${BRANCHES[@]}"; do
if [[ "$b" == "${GITHUB_REF_NAME}" ]]; then
MATCH=true
break
fi
done
echo "branch_match=$MATCH" >> $GITHUB_OUTPUT
# 通过变量CE_COMPILE_SELECTION中的映射关系,决定分支是编译sm8090还是sm8689
for pair in $(echo "$CE_COMPILE_SELECTION" | tr ';' ' '); do
branch=$(echo "$pair" | cut -d',' -f1)
compile_task_list=$(echo "$pair" | cut -d',' -f2)
if [[ "$branch" == "$GITHUB_REF_NAME" ]]; then
# 判断里面是否包含 sm8090 或 sm8689
if [[ "$compile_task_list" == *"sm8090"* ]]; then
echo "sm8090_match=true" >> $GITHUB_OUTPUT
fi
if [[ "$compile_task_list" == *"sm8689"* ]]; then
echo "sm8689_match=true" >> $GITHUB_OUTPUT
fi
break
fi
done
# 通过变量COMPILE_USE_PADDLE_WHL_URL_MAPPINGS中的映射关系,决定是否是安装指定版本的Paddle还是直接安装URL
for pair in $(echo $COMPILE_USE_PADDLE_WHL_URL_MAPPINGS | tr ';' ' '); do
branch=$(echo "$pair" | cut -d',' -f1)
paddle_whl_url=$(echo "$pair" | cut -d',' -f2)
if [[ "$branch" == "${{ github.ref_name }}" ]]; then
FOUND_PADDLE_URL="$paddle_whl_url"
echo "compile_use_paddle_whl_url=${FOUND_PADDLE_URL}" >> $GITHUB_OUTPUT
break
fi
done
print_ce_job_pre_check_outputs:
runs-on: ubuntu-latest
needs: ce_job_pre_check
steps:
- name: Print outputs as JSON
run: |
echo '${{ toJSON(needs.ce_job_pre_check.outputs) }}'
clone:
environment: CodeSync
name: FD-Clone-Linux
runs-on: ubuntu-latest
needs: ce_job_pre_check
if: ${{ needs.ce_job_pre_check.outputs.branch_match == 'true' }}
outputs:
repo_archive_url: ${{ steps.set_output.outputs.repo_archive_url }}
steps:
- name: Clone FastDeploy
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request'
&& github.event.pull_request.base.ref
|| github.ref_name }}
submodules: 'recursive'
fetch-depth: 1000
- name: Python Setup
uses: actions/setup-python@v5
with:
python-version: '3.10'
- name: Code Info Show and Upload
id: set_output
env:
AK: ${{ secrets.BOS_AK }}
SK: ${{ secrets.BOS_SK }}
run: |
git config --unset http.https://github.com/.extraheader
git submodule foreach --recursive sh -c "git config --local --unset-all 'http.https://github.com/.extraheader'"
git submodule foreach --recursive sh -c "git config remote.origin.fetch '+refs/heads/*:refs/remotes/origin/*'"
echo "Current HEAD Log:"
git log --oneline -n 5
ls
cd ..
tar -zcf FastDeploy.tar.gz FastDeploy
commit_id=${{ github.sha }}
branch_name=${{ github.ref_name }}
target_path=paddle-qa/BRANCH/FastDeploy/${branch_name}/${commit_id}
wget -q --no-proxy --no-check-certificate https://paddle-qa.bj.bcebos.com/CodeSync/develop/PaddlePaddle/PaddleTest/tools/bos_tools.py
push_file=$(realpath bos_tools.py)
python -m pip install bce-python-sdk==0.9.29
ls
python ${push_file} FastDeploy.tar.gz ${target_path}
target_path_stripped="${target_path#paddle-qa/}"
REPO_ARCHIVE_URL=https://paddle-qa.bj.bcebos.com/${target_path_stripped}/FastDeploy.tar.gz
echo "repo_archive_url=${REPO_ARCHIVE_URL}" >> $GITHUB_OUTPUT
resultshow:
name: Show Code Archive Output
needs: clone
runs-on: ubuntu-latest
steps:
- name: Print wheel path
run: |
echo "The code archive is located at: ${{ needs.clone.outputs.repo_archive_url }}"
build_sm8090:
name: BUILD_SM8090
needs: [clone, ce_job_pre_check]
if: ${{ needs.ce_job_pre_check.outputs.sm8090_match == 'true' }}
uses: ./.github/workflows/_build_linux.yml
with:
DOCKER_IMAGE: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
COMPILE_ARCH: "80,90"
WITH_NIGHTLY_BUILD: OFF
FD_VERSION: 0.0.0
PADDLE_WHL_URL: ${{ needs.ce_job_pre_check.outputs.compile_use_paddle_whl_url }}
build_sm8689:
name: BUILD_SM8689
needs: [clone, ce_job_pre_check]
if: ${{ needs.ce_job_pre_check.outputs.sm8689_match == 'true' }}
uses: ./.github/workflows/_build_linux.yml
with:
DOCKER_IMAGE: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
COMPILE_ARCH: "86,89"
WITH_NIGHTLY_BUILD: OFF
FD_VERSION: 0.0.0
PADDLE_WHL_URL: ${{ needs.ce_job_pre_check.outputs.compile_use_paddle_whl_url }}
ce_upload_sm8090:
environment: CodeSync
name: CE_UPLOAD
needs: build_sm8090
runs-on: ubuntu-latest
env:
AK: ${{ secrets.BOS_AK }}
SK: ${{ secrets.BOS_SK }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build_sm8090.outputs.wheel_path }}
COMPILE_ARCH: "80,90"
steps:
- uses: actions/setup-python@v5
with:
python-version: '3.10'
- name: Wheel Info Show and Upload
run: |
echo "The wheel is located at: ${{ needs.build_sm8090.outputs.wheel_path }}"
wget -q --no-check-certificate ${{ needs.build_sm8090.outputs.wheel_path }}
filename=$(basename ${{ needs.build_sm8090.outputs.wheel_path }})
commit_id=${{ github.sha }}
branch_name=${{ github.ref_name }}
target_path=paddle-qa/paddle-pipeline/FastDeploy_ActionCE/SM${COMPILE_ARCH//,/_}/${branch_name}/${commit_id}
wget -q --no-proxy --no-check-certificate https://paddle-qa.bj.bcebos.com/CodeSync/develop/PaddlePaddle/PaddleTest/tools/bos_tools.py
push_file=$(realpath bos_tools.py)
python -m pip install bce-python-sdk==0.9.29
ls
python ${push_file} ${filename} ${target_path}
target_path_stripped="${target_path#paddle-qa/}"
WHEEL_PATH=https://paddle-qa.bj.bcebos.com/${target_path_stripped}/${filename}
target_path_latest=paddle-qa/paddle-pipeline/FastDeploy_ActionCE/SM${COMPILE_ARCH//,/_}/${branch_name}/latest
python ${push_file} ${filename} ${target_path_latest}
target_path_stripped_latest="${target_path_latest#paddle-qa/}"
WHEEL_PATH_LATEST=https://paddle-qa.bj.bcebos.com/${target_path_stripped_latest}/${filename}
echo "commit wheel url is ${WHEEL_PATH}"
echo "latest wheel url is ${WHEEL_PATH_LATEST}"
ce_upload_sm8689:
environment: CodeSync
name: CE_UPLOAD
needs: build_sm8689
runs-on: ubuntu-latest
env:
AK: ${{ secrets.BOS_AK }}
SK: ${{ secrets.BOS_SK }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build_sm8689.outputs.wheel_path }}
COMPILE_ARCH: "86,89"
steps:
- uses: actions/setup-python@v5
with:
python-version: '3.10'
- name: Wheel Info Show and Upload
run: |
echo "The wheel is located at: ${{ needs.build_sm8689.outputs.wheel_path }}"
wget -q --no-check-certificate ${{ needs.build_sm8689.outputs.wheel_path }}
filename=$(basename ${{ needs.build_sm8689.outputs.wheel_path }})
commit_id=${{ github.sha }}
branch_name=${{ github.ref_name }}
target_path=paddle-qa/paddle-pipeline/FastDeploy_ActionCE/SM${COMPILE_ARCH//,/_}/${branch_name}/${commit_id}
wget -q --no-proxy --no-check-certificate https://paddle-qa.bj.bcebos.com/CodeSync/develop/PaddlePaddle/PaddleTest/tools/bos_tools.py
push_file=$(realpath bos_tools.py)
python -m pip install bce-python-sdk==0.9.29
ls
python ${push_file} ${filename} ${target_path}
target_path_stripped="${target_path#paddle-qa/}"
WHEEL_PATH=https://paddle-qa.bj.bcebos.com/${target_path_stripped}/${filename}
target_path_latest=paddle-qa/paddle-pipeline/FastDeploy_ActionCE/SM${COMPILE_ARCH//,/_}/${branch_name}/latest
python ${push_file} ${filename} ${target_path_latest}
target_path_stripped_latest="${target_path_latest#paddle-qa/}"
WHEEL_PATH_LATEST=https://paddle-qa.bj.bcebos.com/${target_path_stripped_latest}/${filename}
echo "commit wheel url is ${WHEEL_PATH}"
echo "latest wheel url is ${WHEEL_PATH_LATEST}"

View File

@@ -1,51 +0,0 @@
on:
workflow_call:
inputs:
workflow-name:
required: true
type: string
secrets:
github-token:
required: true
outputs:
can-skip:
description: "Whether the workflow can be skipped."
value: ${{ jobs.check-bypass.outputs.can-skip }}
jobs:
check-bypass:
name: Check bypass
runs-on: ubuntu-latest
permissions:
contents: read
env:
CI_TEAM_MEMBERS: '["yuanlehome","YuanRisheng","Jiang-Jia-Jun","DDDivano","XieYunshen"]'
outputs:
can-skip: ${{ steps.check-bypass.outputs.can-skip }}
steps:
- name: Cleanup
run: |
rm -rf * .[^.]*
- id: check-bypass
name: Check Bypass
uses: PFCCLab/ci-bypass@v1
with:
github-token: ${{ secrets.github-token }}
non-pull-request-event-strategy: 'never-skipped'
type: 'composite'
composite-rule: |
{
"any": [
{
"type": "labeled",
"label": ["skip-ci: ${{ inputs.workflow-name }}", "skip-ci: all"],
"username": ${{ env.CI_TEAM_MEMBERS }}
},
{
"type": "commented",
"comment-pattern": [".*/skip-ci ${{ inputs.workflow-name }}.*", ".*/skip-ci all.*"],
"username": ${{ env.CI_TEAM_MEMBERS }}
}
]
}

View File

@@ -1,10 +1,10 @@
name: CI_GCU
on:
#pull_request:
#branches:
#- develop
#- 'release/*'
pull_request:
branches:
- develop
- 'release/*'
workflow_dispatch:
concurrency:
@@ -13,8 +13,7 @@ concurrency:
jobs:
CI_GCU:
runs-on:
group: GCU
runs-on: [self-hosted, GCU-S60-8Card]
steps:
- name: Print current runner name
run: |
@@ -29,9 +28,7 @@ jobs:
REPO_NAME="${FULL_REPO##*/}"
BASE_BRANCH="${{ github.base_ref }}"
# Clean the repository directory before starting
docker run --rm --net=host -v $(pwd):/workspace \
-v ${{ github.workspace }}/../../..:${{ github.workspace }}/../../.. \
-w /workspace \
docker run --rm --net=host -v $(pwd):/workspace -w /workspace \
-e "REPO_NAME=${REPO_NAME}" \
-e "BASE_BRANCH=${BASE_BRANCH}" \
${docker_image} /bin/bash -c '
@@ -42,7 +39,6 @@ jobs:
'
git config --global user.name "FastDeployCI"
git config --global user.email "fastdeploy_ci@example.com"
source ${{ github.workspace }}/../../../proxy
git clone ${REPO} ${REPO_NAME} -b ${BASE_BRANCH}
cd FastDeploy
if [ "${{ github.event_name }}" = "pull_request" ]; then
@@ -53,9 +49,6 @@ jobs:
git checkout ${{ github.sha }}
git log -n 3 --oneline
fi
echo "Copy models..."
sudo mkdir -p ci_models && sudo cp -r /work/deps/ERNIE-4.5-21B-A3B-Paddle ci_models
echo "Copy models done."
- name: Run CI unittest
env:
@@ -77,21 +70,19 @@ jobs:
echo "PARENT_DIR:$PARENT_DIR"
echo "Install drivers..."
cd /work/deps
sudo bash TopsRider_i3x_*_deb_amd64.run --driver --no-auto-load -y
bash TopsRider_i3x_*_deb_amd64.run --driver --no-auto-load -y
cd -
echo "Create docker..."
docker run --rm --network=host --ipc=host --privileged \
-v $(pwd):/workspace \
-v /home:/home \
-v /work:/work \
-w /workspace \
-e "MODEL_PATH=./ci_models" \
docker run --rm --network=host --ipc=host -it --privileged \
-v $(pwd):/workspace -w /workspace \
-v "/home:/home" \
-v "/work:/work" \
-e "MODEL_PATH=/work/models" \
-e "http_proxy=$(git config --global --get http.proxy)" \
-e "https_proxy=$(git config --global --get https.proxy)" \
-e "FD_API_PORT=${FD_API_PORT}" \
-e "FD_ENGINE_QUEUE_PORT=${FD_ENGINE_QUEUE_PORT}" \
-e "FD_METRICS_PORT=${FD_METRICS_PORT}" \
${docker_image} /bin/bash -c "
${docker_image} /bin/bash -c "
git config --global --add safe.directory /workspace/FastDeploy
cd FastDeploy
bash scripts/run_ci_gcu.sh

View File

@@ -11,8 +11,7 @@ concurrency:
jobs:
CI_ILUVATAR:
runs-on:
group: IXUCA
runs-on: [self-hosted, IXUCA]
steps:
- name: Print current runner name
run: |
@@ -28,22 +27,18 @@ jobs:
REPO="https://github.com/${{ github.repository }}.git"
FULL_REPO="${{ github.repository }}"
REPO_NAME="${FULL_REPO##*/}"
BASE_BRANCH="${{ github.base_ref }}"
# Clean the repository directory before starting
docker run --rm --net=host -v $(pwd):/workspace -w /workspace \
-e "REPO_NAME=${REPO_NAME}" \
-e "BASE_BRANCH=${BASE_BRANCH}" \
${docker_image} /bin/bash -c '
if [ -d ${REPO_NAME} ]; then
echo "Directory ${REPO_NAME} exists, removing it..."
rm -rf ${REPO_NAME}
fi
'
git config --global http.proxy "http://61.151.249.150:33128"
git config --global https.proxy "http://61.151.249.150:33128"
git config --global user.name "FastDeployCI"
git config --global user.email "fastdeploy_ci@example.com"
git clone --recursive ${REPO} ${REPO_NAME} -b ${BASE_BRANCH}
git clone ${REPO} ${REPO_NAME}
cd FastDeploy
if [ "${{ github.event_name }}" = "pull_request" ]; then
git fetch origin pull/${{ github.event.pull_request.number }}/head:pr/${{ github.event.pull_request.number }}

View File

@@ -1,174 +0,0 @@
name: CI Images Build
on:
workflow_dispatch:
schedule:
- cron: '0 18 * * *' # 2:00 AM China Standard Time (UTC+8)
permissions: read-all
concurrency:
group: CI-Images-Build-${{ github.ref }}-${{ github.sha }}
cancel-in-progress: true
jobs:
clone:
environment: CodeSync
name: FD-Clone-Linux
runs-on: ubuntu-latest
outputs:
repo_archive_url: ${{ steps.set_output.outputs.repo_archive_url }}
steps:
- name: Clone FastDeploy
uses: actions/checkout@v4
with:
ref: ${{ github.ref_name }}
submodules: 'recursive'
fetch-depth: 1000
- name: Python Setup
uses: actions/setup-python@v5
with:
python-version: '3.10'
- name: Code Info Show and Upload
id: set_output
env:
AK: ${{ secrets.BOS_AK }}
SK: ${{ secrets.BOS_SK }}
run: |
git config --unset http.https://github.com/.extraheader
git submodule foreach --recursive sh -c "git config --local --unset-all 'http.https://github.com/.extraheader'"
git submodule foreach --recursive sh -c "git config remote.origin.fetch '+refs/heads/*:refs/remotes/origin/*'"
echo "Current HEAD Log:"
git log --oneline -n 5
ls
cd ..
tar -zcf FastDeploy.tar.gz FastDeploy
if [[ "${{ github.ref_type }}" == "tag" ]]; then
commit_id=${{ github.sha }}
tag_name=${{ github.ref_name }}
target_path=paddle-qa/TAG/FastDeploy/${tag_name}/${commit_id}
else
commit_id=${{ github.sha }}
branch_name=${{ github.ref_name }}
target_path=paddle-qa/BRANCH/FastDeploy/${branch_name}/${commit_id}
fi
wget -q --no-proxy --no-check-certificate https://paddle-qa.bj.bcebos.com/CodeSync/develop/PaddlePaddle/PaddleTest/tools/bos_tools.py
push_file=$(realpath bos_tools.py)
python -m pip install bce-python-sdk==0.9.29
ls
python ${push_file} FastDeploy.tar.gz ${target_path}
target_path_stripped="${target_path#paddle-qa/}"
REPO_ARCHIVE_URL=https://paddle-qa.bj.bcebos.com/${target_path_stripped}/FastDeploy.tar.gz
echo "repo_archive_url=${REPO_ARCHIVE_URL}" >> $GITHUB_OUTPUT
resultshow:
name: Show Code Archive Output
needs: clone
runs-on: ubuntu-latest
steps:
- name: Print wheel path
run: |
echo "The code archive is located at: ${{ needs.clone.outputs.repo_archive_url }}"
ci_image_build:
name: CI Images Build
needs: clone
uses: ./.github/workflows/_ci_image_build.yml
with:
CI_DOCKER_IMAGE_NAME: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate-precheck
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
build_sm8090:
name: BUILD_SM8090
needs: [clone, ci_image_build]
uses: ./.github/workflows/_build_linux.yml
with:
DOCKER_IMAGE: ${{ needs.ci_image_build.outputs.docker_name_precheck }}
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
COMPILE_ARCH: "90"
WITH_NIGHTLY_BUILD: ${{ needs.publish_pre_check.outputs.with_nightly_build }}
FD_VERSION: ${{ needs.publish_pre_check.outputs.fd_version }}
PADDLEVERSION: ${{ needs.publish_pre_check.outputs.compile_use_paddle_version }}
PADDLE_WHL_URL: ${{ needs.publish_pre_check.outputs.compile_use_paddle_whl_url }}
unittest_coverage:
name: Run FastDeploy Unit Tests and Coverage
needs: [clone,build_sm8090,ci_image_build]
uses: ./.github/workflows/_unit_test_coverage.yml
with:
DOCKER_IMAGE: ${{ needs.ci_image_build.outputs.docker_name_precheck }}
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build_sm8090.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
logprob_test:
name: Run FastDeploy LogProb Tests
needs: [build_sm8090,ci_image_build]
uses: ./.github/workflows/_logprob_test_linux.yml
with:
DOCKER_IMAGE: ${{ needs.ci_image_build.outputs.docker_name_precheck }}
PADDLETEST_ARCHIVE_URL: "https://xly-devops.bj.bcebos.com/PaddleTest/PaddleTest.tar.gz"
FASTDEPLOY_WHEEL_URL: ${{ needs.build_sm8090.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"
pre_ce_test:
name: Extracted partial CE model tasks to run in CI.
needs: [clone,build_sm8090,ci_image_build]
uses: ./.github/workflows/_pre_ce_test.yml
with:
DOCKER_IMAGE: ${{ needs.ci_image_build.outputs.docker_name_precheck }}
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build_sm8090.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"
base_test:
name: Run Base Tests
needs: [clone,build_sm8090,ci_image_build]
uses: ./.github/workflows/_base_test.yml
with:
DOCKER_IMAGE: ${{ needs.ci_image_build.outputs.docker_name_precheck }}
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build_sm8090.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"
accuracy_test:
name: Run Accuracy Tests
needs: [clone,build_sm8090,ci_image_build]
uses: ./.github/workflows/_accuracy_test.yml
with:
DOCKER_IMAGE: ${{ needs.ci_image_build.outputs.docker_name_precheck }}
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build_sm8090.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"
stable_test:
name: Run Stable Tests
needs: [clone,build_sm8090,ci_image_build]
uses: ./.github/workflows/_stable_test.yml
with:
DOCKER_IMAGE: ${{ needs.ci_image_build.outputs.docker_name_precheck }}
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build_sm8090.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"
publish_pre_check:
name: Publish Docker Images Pre Check
needs: [ci_image_build, unittest_coverage,logprob_test,pre_ce_test,base_test,accuracy_test,stable_test]
runs-on: [self-hosted, Docker-Build]
steps:
- name: Images Uploading
env:
images_name: ${{ needs.ci_image_build.outputs.docker_name_precheck }}
ci_image_name: "ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate"
run: |
echo "images_name=${images_name}"
docker images ${ci_image_name}
docker tag ${images_name} ${ci_image_name}
docker push ${ci_image_name}

View File

@@ -13,7 +13,7 @@ concurrency:
jobs:
CI_XPU:
runs-on: [self-hosted, XPU-P800-8Card]
runs-on: [self-hosted, XPU-P800-8Card-release]
steps:
- name: Print current runner name
run: |
@@ -24,7 +24,7 @@ jobs:
- name: Code Checkout
env:
docker_image: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/fastdeploy-xpu:2.2.0
docker_image: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/fastdeploy-xpu:2.0.0
run: |
REPO="https://github.com/${{ github.repository }}.git"
FULL_REPO="${{ github.repository }}"
@@ -55,7 +55,7 @@ jobs:
- name: Run CI unittest
env:
docker_image: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/fastdeploy-xpu:2.2.0
docker_image: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/fastdeploy-xpu:2.0.0
run: |
runner_name="${{ runner.name }}"
last_char="${runner_name: -1}"
@@ -77,7 +77,6 @@ jobs:
-e "MODEL_PATH=/ssd3/model" \
-e "http_proxy=$(git config --global --get http.proxy)" \
-e "https_proxy=$(git config --global --get https.proxy)" \
-e "no_proxy=bcebos.com,mirrors.tuna.tsinghua.edu.cn,127.0.0.1,localhost" \
-e "FD_API_PORT=${FD_API_PORT}" \
-e "FD_ENGINE_QUEUE_PORT=${FD_ENGINE_QUEUE_PORT}" \
-e "FD_METRICS_PORT=${FD_METRICS_PORT}" \

View File

@@ -19,9 +19,9 @@ jobs:
needs: clone
uses: ./.github/workflows/_build_linux.yml
with:
DOCKER_IMAGE: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate
DOCKER_IMAGE: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:cuda126-py310
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
COMPILE_ARCH: "90"
COMPILE_ARCH: "89,90"
WITH_NIGHTLY_BUILD: "OFF"
FD_VERSION: "0.0.0"
@@ -43,8 +43,6 @@ jobs:
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
logprob_test:
name: Run FastDeploy LogProb Tests
@@ -65,33 +63,3 @@ jobs:
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"
base_test:
name: Run Base Tests
needs: [clone,build]
uses: ./.github/workflows/_base_test.yml
with:
DOCKER_IMAGE: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"
accuracy_test:
name: Run Accuracy Tests
needs: [clone,build]
uses: ./.github/workflows/_accuracy_test.yml
with:
DOCKER_IMAGE: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"
stable_test:
name: Run Stable Tests
needs: [clone,build]
uses: ./.github/workflows/_stable_test.yml
with:
DOCKER_IMAGE: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"

View File

@@ -1,381 +0,0 @@
name: Publish Job
on:
workflow_dispatch:
schedule:
- cron: '0 18 * * *' # 2:00 AM China Standard Time (UTC+8)
push:
# branches:
# - develop
tags:
- '*'
permissions: read-all
concurrency:
group: Publish-Job-${{ github.ref }}-${{ github.sha }}
cancel-in-progress: true
jobs:
publish_pre_check:
runs-on: ubuntu-latest
if: |
github.event.repository.fork == false &&
(
(github.event_name == 'schedule' && github.ref_name == 'develop') ||
(github.event_name == 'push' && github.ref_type == 'tag') ||
((github.event_name == 'workflow_dispatch') &&
(github.ref_name == 'develop' || github.ref_type == 'tag'))
)
env:
TAG_VERSION_MAPPINGS: ${{ vars.TAG_VERSION_MAPPINGS }}
FD_VERSION_DEV: ${{ vars.FD_VERSION_DEV }}
COMPILE_USE_PADDLE_WHL_URL_MAPPINGS: ${{ vars.COMPILE_USE_PADDLE_WHL_URL_MAPPINGS }}
outputs:
compile_use_paddle_version: ${{ steps.set_output.outputs.compile_use_paddle_version }}
compile_continue: ${{ steps.set_output.outputs.compile_continue }}
fd_version: ${{ steps.set_output.outputs.fd_version }}
with_nightly_build: ${{ steps.set_output.outputs.with_nightly_build }}
compile_use_paddle_whl_url: ${{ steps.set_output.outputs.compile_use_paddle_whl_url }}
steps:
- name: Get tag version
if: github.ref_type == 'tag'
run: |
TAG_NAME="${GITHUB_REF##*/}" # 提取 tag 名称,比如 v2.1.0
TAG_VERSION="${TAG_NAME#v}" # 去掉前缀 v
echo "FD_VERSION=$TAG_VERSION" >> $GITHUB_ENV
- name: Check FD version to Paddle version mapping
if: github.ref_type == 'tag'
env:
TARGET_FD: ${{ env.FD_VERSION }}
run: |
FOUND_PADDLE=""
# 遍历映射
for pair in $(echo $TAG_VERSION_MAPPINGS | tr ';' ' '); do
fd=$(echo "$pair" | cut -d',' -f1)
paddle=$(echo "$pair" | cut -d',' -f2)
if [[ "$fd" == "$TARGET_FD" ]]; then
FOUND_PADDLE="$paddle"
break
fi
done
if [[ -z "$FOUND_PADDLE" ]]; then
echo "No Paddle version found for FD $TARGET_FD"
else
echo "FD $TARGET_FD maps to Paddle $FOUND_PADDLE"
echo "PADDLE_VERSION=$FOUND_PADDLE" >> $GITHUB_ENV
fi
- name: Set Version
id: set_output
env:
PADDLE_VERSION: ${{ env.PADDLE_VERSION }}
FD_VERSION: ${{ env.FD_VERSION }}
run: |
if [[ "${{ github.ref_type }}" == "tag" ]]; then
if [[ -z "$PADDLE_VERSION" ]]; then
compile_continue=false
else
compile_use_paddle_version=$PADDLE_VERSION
compile_continue=true
fi
fd_version=$FD_VERSION
fi
if [[ "${{ github.ref_name }}" == "develop" ]];then
compile_continue=true
compile_use_paddle_version=""
fd_version=${FD_VERSION_DEV}
with_nightly_build=ON
fi
# Todo
# 通过变量COMPILE_USE_PADDLE_WHL_URL_MAPPINGS中的映射关系,决定是否是安装指定版本的Paddle还是直接安装URL
for pair in $(echo $COMPILE_USE_PADDLE_WHL_URL_MAPPINGS | tr ';' ' '); do
branch=$(echo "$pair" | cut -d',' -f1)
paddle_whl_url=$(echo "$pair" | cut -d',' -f2)
if [[ "$branch" == "${{ github.ref_name }}" ]]; then
FOUND_PADDLE_URL="$paddle_whl_url"
echo "compile_use_paddle_whl_url=${FOUND_PADDLE_URL}" >> $GITHUB_OUTPUT
compile_continue=true
break
fi
done
echo "compile_continue=${compile_continue}" >> $GITHUB_OUTPUT
echo "compile_use_paddle_version=${compile_use_paddle_version}" >> $GITHUB_OUTPUT
echo "fd_version=${fd_version}" >> $GITHUB_OUTPUT
echo "with_nightly_build=${with_nightly_build:-OFF}" >> $GITHUB_OUTPUT
print_publish_pre_check_outputs:
runs-on: ubuntu-latest
needs: publish_pre_check
steps:
- name: Print outputs as JSON
run: |
echo '${{ toJSON(needs.publish_pre_check.outputs) }}'
clone:
environment: CodeSync
name: FD-Clone-Linux
runs-on: ubuntu-latest
needs: publish_pre_check
if: ${{ needs.publish_pre_check.outputs.compile_continue == 'true' }}
outputs:
repo_archive_url: ${{ steps.set_output.outputs.repo_archive_url }}
steps:
- name: Clone FastDeploy
uses: actions/checkout@v4
with:
ref: ${{ github.ref_name }}
submodules: 'recursive'
fetch-depth: 1000
- name: Python Setup
uses: actions/setup-python@v5
with:
python-version: '3.10'
- name: Code Info Show and Upload
id: set_output
env:
AK: ${{ secrets.BOS_AK }}
SK: ${{ secrets.BOS_SK }}
run: |
git config --unset http.https://github.com/.extraheader
git submodule foreach --recursive sh -c "git config --local --unset-all 'http.https://github.com/.extraheader'"
git submodule foreach --recursive sh -c "git config remote.origin.fetch '+refs/heads/*:refs/remotes/origin/*'"
echo "Current HEAD Log:"
git log --oneline -n 5
ls
cd ..
tar -zcf FastDeploy.tar.gz FastDeploy
if [[ "${{ github.ref_type }}" == "tag" ]]; then
commit_id=${{ github.sha }}
tag_name=${{ github.ref_name }}
target_path=paddle-qa/TAG/FastDeploy/${tag_name}/${commit_id}
else
commit_id=${{ github.sha }}
branch_name=${{ github.ref_name }}
target_path=paddle-qa/BRANCH/FastDeploy/${branch_name}/${commit_id}
fi
wget -q --no-proxy --no-check-certificate https://paddle-qa.bj.bcebos.com/CodeSync/develop/PaddlePaddle/PaddleTest/tools/bos_tools.py
push_file=$(realpath bos_tools.py)
python -m pip install bce-python-sdk==0.9.29
ls
python ${push_file} FastDeploy.tar.gz ${target_path}
target_path_stripped="${target_path#paddle-qa/}"
REPO_ARCHIVE_URL=https://paddle-qa.bj.bcebos.com/${target_path_stripped}/FastDeploy.tar.gz
echo "repo_archive_url=${REPO_ARCHIVE_URL}" >> $GITHUB_OUTPUT
resultshow:
name: Show Code Archive Output
needs: clone
runs-on: ubuntu-latest
steps:
- name: Print wheel path
run: |
echo "The code archive is located at: ${{ needs.clone.outputs.repo_archive_url }}"
build_sm8090:
name: BUILD_SM8090
needs: [clone, publish_pre_check]
uses: ./.github/workflows/_build_linux.yml
with:
DOCKER_IMAGE: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
COMPILE_ARCH: "80,90"
WITH_NIGHTLY_BUILD: ${{ needs.publish_pre_check.outputs.with_nightly_build }}
FD_VERSION: ${{ needs.publish_pre_check.outputs.fd_version }}
PADDLEVERSION: ${{ needs.publish_pre_check.outputs.compile_use_paddle_version }}
PADDLE_WHL_URL: ${{ needs.publish_pre_check.outputs.compile_use_paddle_whl_url }}
build_sm8689:
name: BUILD_SM8689
needs: [clone, publish_pre_check]
uses: ./.github/workflows/_build_linux.yml
with:
DOCKER_IMAGE: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
COMPILE_ARCH: "86,89"
WITH_NIGHTLY_BUILD: ${{ needs.publish_pre_check.outputs.with_nightly_build }}
FD_VERSION: ${{ needs.publish_pre_check.outputs.fd_version }}
PADDLEVERSION: ${{ needs.publish_pre_check.outputs.compile_use_paddle_version }}
PADDLE_WHL_URL: ${{ needs.publish_pre_check.outputs.compile_use_paddle_whl_url }}
paddle_pypi_upload_sm8090:
environment: PaddleSourceUpload
name: PADDLE_PYPI_UPLOAD_8090
needs: build_sm8090
runs-on: ubuntu-latest
env:
AK: ${{ secrets.BOS_AK }}
SK: ${{ secrets.BOS_SK }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build_sm8090.outputs.wheel_path }}
COMPILE_ARCH: "80,90"
steps:
- uses: actions/setup-python@v5
with:
python-version: '3.10'
- name: Wheel Info Show and Upload
if: github.ref_name == 'develop' || github.ref_type == 'tag'
run: |
echo "The wheel is located at: ${FASTDEPLOY_WHEEL_URL}"
wget -q --no-check-certificate ${FASTDEPLOY_WHEEL_URL}
filename=$(basename ${FASTDEPLOY_WHEEL_URL})
if [[ "${{ github.ref_name }}" == "develop" ]];then
target_path=paddle-whl/nightly/fastdeploy-gpu-${COMPILE_ARCH//,/_}/fastdeploy-gpu
elif [[ "${{ github.ref_type }}" == "tag" ]]; then
target_path=paddle-whl/stable/fastdeploy-gpu-${COMPILE_ARCH//,/_}/fastdeploy-gpu
else
echo "Not develop or tag, do nothing"
fi
wget -q --no-proxy --no-check-certificate https://paddle-qa.bj.bcebos.com/CodeSync/develop/PaddlePaddle/PaddleTest/tools/bos_tools.py
push_file=$(realpath bos_tools.py)
python -m pip install bce-python-sdk==0.9.29
ls
python ${push_file} ${filename} ${target_path}
paddle_pypi_upload_sm8689:
environment: PaddleSourceUpload
name: PADDLE_PYPI_UPLOAD_8689
needs: build_sm8689
runs-on: ubuntu-latest
env:
AK: ${{ secrets.BOS_AK }}
SK: ${{ secrets.BOS_SK }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build_sm8689.outputs.wheel_path }}
COMPILE_ARCH: "86,89"
steps:
- uses: actions/setup-python@v5
with:
python-version: '3.10'
- name: Wheel Info Show and Upload
if: github.ref_name == 'develop' || github.ref_type == 'tag'
run: |
echo "The wheel is located at: ${FASTDEPLOY_WHEEL_URL}"
wget -q --no-check-certificate ${FASTDEPLOY_WHEEL_URL}
filename=$(basename ${FASTDEPLOY_WHEEL_URL})
if [[ "${{ github.ref_name }}" == "develop" ]];then
target_path=paddle-whl/nightly/fastdeploy-gpu-${COMPILE_ARCH//,/_}/fastdeploy-gpu
elif [[ "${{ github.ref_type }}" == "tag" ]]; then
target_path=paddle-whl/stable/fastdeploy-gpu-${COMPILE_ARCH//,/_}/fastdeploy-gpu
else
echo "Not develop or tag, do nothing"
fi
wget -q --no-proxy --no-check-certificate https://paddle-qa.bj.bcebos.com/CodeSync/develop/PaddlePaddle/PaddleTest/tools/bos_tools.py
push_file=$(realpath bos_tools.py)
python -m pip install bce-python-sdk==0.9.29
ls
python ${push_file} ${filename} ${target_path}
images_build:
name: Run FD Image Build
needs: [clone, publish_pre_check, build_sm8090]
runs-on: [self-hosted, Docker-Build]
if: |
github.event.repository.fork == false &&
(
(github.event_name == 'push' && github.ref_type == 'tag') ||
(github.event_name == 'workflow_dispatch' && github.ref_type == 'tag')
)
env:
FD_VERSION: ${{ needs.publish_pre_check.outputs.fd_version }}
PADDLEVERSION: ${{ needs.publish_pre_check.outputs.compile_use_paddle_version }}
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
steps:
- name: Images Build
shell: bash
env:
docker_image: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate
fd_archive_url: ${FASTDEPLOY_ARCHIVE_URL}
run: |
set -x
FULL_REPO="${{ github.repository }}"
REPO_NAME="${FULL_REPO##*/}"
# Clean the repository directory before starting
docker run --rm --net=host -v $(pwd):/workspace -w /workspace \
-e "REPO_NAME=${REPO_NAME}" \
${docker_image} /bin/bash -c '
if [ -d ${REPO_NAME} ]; then
echo "Directory ${REPO_NAME} exists, removing it..."
rm -rf ${REPO_NAME}*
fi
'
wget -q --no-proxy ${fd_archive_url}
tar -xf FastDeploy.tar.gz
rm -rf FastDeploy.tar.gz
cd FastDeploy
git config --global user.name "FastDeployCI"
git config --global user.email "fastdeploy_ci@example.com"
git log -n 3 --oneline
PRODUCT_NAME=ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/fastdeploy-cuda-12.6:${FD_VERSION}
docker build --no-cache -t ${PRODUCT_NAME} -f Dockerfile.gpu . \
--network host \
--build-arg PADDLE_VERSION=${PADDLEVERSION} \
--build-arg FD_VERSION=${FD_VERSION}
docker push ${PRODUCT_NAME}
unittest_coverage:
name: Run FastDeploy Unit Tests and Coverage
needs: [clone,build_sm8090]
uses: ./.github/workflows/_unit_test_coverage.yml
with:
DOCKER_IMAGE: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build_sm8090.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
logprob_test:
name: Run FastDeploy LogProb Tests
needs: [build_sm8090]
uses: ./.github/workflows/_logprob_test_linux.yml
with:
DOCKER_IMAGE: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate
PADDLETEST_ARCHIVE_URL: "https://xly-devops.bj.bcebos.com/PaddleTest/PaddleTest.tar.gz"
FASTDEPLOY_WHEEL_URL: ${{ needs.build_sm8090.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"
pre_ce_test:
name: Extracted partial CE model tasks to run in CI.
needs: [clone,build_sm8090]
uses: ./.github/workflows/_pre_ce_test.yml
with:
DOCKER_IMAGE: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build_sm8090.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"
base_test:
name: Run Base Tests
needs: [clone,build_sm8090]
uses: ./.github/workflows/_base_test.yml
with:
DOCKER_IMAGE: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build_sm8090.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"
accuracy_test:
name: Run Accuracy Tests
needs: [clone,build_sm8090]
uses: ./.github/workflows/_accuracy_test.yml
with:
DOCKER_IMAGE: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build_sm8090.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"
stable_test:
name: Run Stable Tests
needs: [clone,build_sm8090]
uses: ./.github/workflows/_stable_test.yml
with:
DOCKER_IMAGE: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddleqa:fastdeploy-ciuse-cuda126-dailyupdate
FASTDEPLOY_ARCHIVE_URL: ${{ needs.clone.outputs.repo_archive_url }}
FASTDEPLOY_WHEEL_URL: ${{ needs.build.outputs.wheel_path }}
MODEL_CACHE_DIR: "/ssd2/actions-runner/ModelData"

View File

@@ -1,157 +0,0 @@
name: Re-run
on:
issue_comment:
types: [created]
jobs:
re-run:
if: ${{ github.event.issue.pull_request && contains(github.event.comment.body, '/re-run') && github.event.comment.user.login == github.event.issue.user.login }}
runs-on: ubuntu-latest
steps:
- name: Cleanup
run: |
rm -rf * .[^.]*
- name: Checkout code
uses: actions/checkout@v5
- name: Rerun all failed jobs
if: ${{ contains(github.event.comment.body, 'all-failed') }}
uses: ./.github/actions/rerun-workflow
with:
PR_ID: ${{ github.event.issue.number }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
OWNER: ${{ github.repository_owner }}
REPO: ${{ github.event.repository.name }}
JOB_NAME: 'all-failed'
- name: Rerun Approval
if: ${{ contains(github.event.comment.body, 'approval') }}
uses: ./.github/actions/rerun-workflow
with:
PR_ID: ${{ github.event.issue.number }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
OWNER: ${{ github.repository_owner }}
REPO: ${{ github.event.repository.name }}
JOB_NAME: 'Approval'
- name: Rerun CI_ILUVATAR
if: ${{ contains(github.event.comment.body, 'ci_iluvatar') }}
uses: ./.github/actions/rerun-workflow
with:
PR_ID: ${{ github.event.issue.number }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
OWNER: ${{ github.repository_owner }}
REPO: ${{ github.event.repository.name }}
JOB_NAME: 'CI_ILUVATAR'
- name: Rerun CI_XPU
if: ${{ contains(github.event.comment.body, 'ci_xpu') }}
uses: ./.github/actions/rerun-workflow
with:
PR_ID: ${{ github.event.issue.number }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
OWNER: ${{ github.repository_owner }}
REPO: ${{ github.event.repository.name }}
JOB_NAME: 'CI_XPU'
- name: Rerun Codestyle-check
if: ${{ contains(github.event.comment.body, 'codestyle') || contains(github.event.comment.body, 'pre_commit') }}
uses: ./.github/actions/rerun-workflow
with:
PR_ID: ${{ github.event.issue.number }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
OWNER: ${{ github.repository_owner }}
REPO: ${{ github.event.repository.name }}
JOB_NAME: 'Pre Commit'
- name: Rerun Clone
if: ${{ contains(github.event.comment.body, 'clone') }}
uses: ./.github/actions/rerun-workflow
with:
PR_ID: ${{ github.event.issue.number }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
OWNER: ${{ github.repository_owner }}
REPO: ${{ github.event.repository.name }}
JOB_NAME: 'FD-Clone-Linux / code-clone'
- name: Rerun Build
if: ${{ contains(github.event.comment.body, 'build') }}
uses: ./.github/actions/rerun-workflow
with:
PR_ID: ${{ github.event.issue.number }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
OWNER: ${{ github.repository_owner }}
REPO: ${{ github.event.repository.name }}
JOB_NAME: 'FD-Build-Linux / fd-build'
- name: Rerun run_ce_cases
if: ${{ contains(github.event.comment.body, 'run_ce_cases') }}
uses: ./.github/actions/rerun-workflow
with:
PR_ID: ${{ github.event.issue.number }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
OWNER: ${{ github.repository_owner }}
REPO: ${{ github.event.repository.name }}
JOB_NAME: 'Extracted partial CE model tasks to run in CI. / run_ce_cases'
- name: Rerun accuracy_tests
if: ${{ contains(github.event.comment.body, 'accuracy_tests') }}
uses: ./.github/actions/rerun-workflow
with:
PR_ID: ${{ github.event.issue.number }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
OWNER: ${{ github.repository_owner }}
REPO: ${{ github.event.repository.name }}
JOB_NAME: 'Run Accuracy Tests / accuracy_tests'
- name: Rerun base_tests
if: ${{ contains(github.event.comment.body, 'base_tests') }}
uses: ./.github/actions/rerun-workflow
with:
PR_ID: ${{ github.event.issue.number }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
OWNER: ${{ github.repository_owner }}
REPO: ${{ github.event.repository.name }}
JOB_NAME: 'Run Base Tests / base_tests'
- name: Rerun run_tests_logprob
if: ${{ contains(github.event.comment.body, 'run_tests_logprob') }}
uses: ./.github/actions/rerun-workflow
with:
PR_ID: ${{ github.event.issue.number }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
OWNER: ${{ github.repository_owner }}
REPO: ${{ github.event.repository.name }}
JOB_NAME: 'Run FastDeploy LogProb Tests / run_tests_logprob'
- name: Rerun run_tests_with_coverage
if: ${{ contains(github.event.comment.body, 'run_tests_with_coverage') }}
uses: ./.github/actions/rerun-workflow
with:
PR_ID: ${{ github.event.issue.number }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
OWNER: ${{ github.repository_owner }}
REPO: ${{ github.event.repository.name }}
JOB_NAME: 'Run FastDeploy Unit Tests and Coverage / run_tests_with_coverage'
- name: Rerun diff_coverage_report
if: ${{ contains(github.event.comment.body, 'diff_coverage_report') }}
uses: ./.github/actions/rerun-workflow
with:
PR_ID: ${{ github.event.issue.number }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
OWNER: ${{ github.repository_owner }}
REPO: ${{ github.event.repository.name }}
JOB_NAME: 'Run FastDeploy Unit Tests and Coverage / diff_coverage_report'
- name: Rerun stable_tests
if: ${{ contains(github.event.comment.body, 'stable_tests') }}
uses: ./.github/actions/rerun-workflow
with:
PR_ID: ${{ github.event.issue.number }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
OWNER: ${{ github.repository_owner }}
REPO: ${{ github.event.repository.name }}
JOB_NAME: 'Run Stable Tests / stable_tests'

14
.gitignore vendored
View File

@@ -121,7 +121,7 @@ dmypy.json
FETCH_HEAD
#log
log/
log*/
checkpoints/
checkpoints_origin/
@@ -156,12 +156,6 @@ nohup.out
custom_ops/gpu_ops/fp8_deep_gemm/deep_gemm/include/cutlass
custom_ops/gpu_ops/fp8_deep_gemm/deep_gemm/include/cute
#marlin_kernel
custom_ops/gpu_ops/moe/moe_wna16_marlin_utils/kernel_*.cu
#machete_kernel
custom_ops/gpu_ops/machete/generated
# buff
custom_ops/tmp*
@@ -170,9 +164,3 @@ build
.ccls-cache
third_party
custom_ops/gpu_ops/w4afp8_gemm/w4afp8_gemm_*.cu
custom_ops/gpu_ops/w4afp8_gemm/w4afp8_gemm_template.h
custom_ops/gpu_ops/wfp8afp8_sparse_gemm/wfp8Afp8_sparse_gemm_*.cu
custom_ops/gpu_ops/wfp8afp8_sparse_gemm/wfp8Afp8_sparse_gemm_template.h

10
.gitmodules vendored
View File

@@ -1,10 +0,0 @@
[submodule "custom_ops/third_party/DeepGEMM"]
path = custom_ops/third_party/DeepGEMM
url = https://github.com/deepseek-ai/DeepGEMM.git
ignore = all
[submodule "custom_ops/third_party/cutlass"]
path = custom_ops/third_party/cutlass
url = https://github.com/NVIDIA/cutlass.git
[submodule "custom_ops/third_party/nlohmann_json"]
path = custom_ops/third_party/nlohmann_json
url = https://github.com/nlohmann/json.git

View File

@@ -1,7 +1,3 @@
exclude: |
(?x)^(
dockerfiles/.+
)$
default_install_hook_types:
- pre-commit
- commit-msg
@@ -31,15 +27,6 @@ repos:
hooks:
- id: ruff
args: [--output-format, github, --fix, --line-length=120, --config, pyproject.toml]
# For C++ files
- repo: local
hooks:
- id: clang-format
name: clang-format
description: Format files with ClangFormat.
entry: clang-format -i
language: system
files: \.(c|cc|cxx|cpp|cu|h|cuh|hpp|hxx|xpu|kps)$
# # 拼写检查
# - repo: https://github.com/codespell-project/codespell
# rev: v2.4.1

View File

@@ -26,8 +26,6 @@ English | [简体中文](README_CN.md)
# FastDeploy : Inference and Deployment Toolkit for LLMs and VLMs based on PaddlePaddle
## News
**[2025-09] 🔥 FastDeploy v2.2 is newly released!** It now offers compatibility with models in the HuggingFace ecosystem, has further optimized performance, and newly adds support for [baidu/ERNIE-21B-A3B-Thinking](https://huggingface.co/baidu/ERNIE-4.5-21B-A3B-Thinking)!
**[2025-08] 🔥 Released FastDeploy v2.1:** A brand-new KV Cache scheduling strategy has been introduced, and expanded support for PD separation and CUDA Graph across more models. Enhanced hardware support has been added for platforms like Kunlun and Hygon, along with comprehensive optimizations to improve the performance of both the service and inference engine.
**[2025-07] The FastDeploy 2.0 Inference Deployment Challenge is now live!** Complete the inference deployment task for the ERNIE 4.5 series open-source models to win official FastDeploy 2.0 merch and generous prizes! 🎁 You're welcome to try it out and share your feedback! 📌[Sign up here](https://www.wjx.top/vm/meSsp3L.aspx#) 📌[Event details](https://github.com/PaddlePaddle/FastDeploy/discussions/2728)
@@ -43,7 +41,7 @@ English | [简体中文](README_CN.md)
- 🤝 **OpenAI API Server and vLLM Compatible**: One-command deployment with [vLLM](https://github.com/vllm-project/vllm/) interface compatibility.
- 🧮 **Comprehensive Quantization Format Support**: W8A16, W8A8, W4A16, W4A8, W2A16, FP8, and more.
-**Advanced Acceleration Techniques**: Speculative decoding, Multi-Token Prediction (MTP) and Chunked Prefill.
- 🖥️ **Multi-Hardware Support**: NVIDIA GPU, Kunlunxin XPU, Hygon DCU, Ascend NPU, Iluvatar GPU, Enflame GCU, MetaX GPU, Intel Gaudi etc.
- 🖥️ **Multi-Hardware Support**: NVIDIA GPU, Kunlunxin XPU, Hygon DCU, Ascend NPU, Iluvatar GPU, Enflame GCU, MetaX GPU etc.
## Requirements
@@ -59,10 +57,8 @@ FastDeploy supports inference deployment on **NVIDIA GPUs**, **Kunlunxin XPUs**,
- [Iluvatar GPU](./docs/get_started/installation/iluvatar_gpu.md)
- [Enflame GCU](./docs/get_started/installation/Enflame_gcu.md)
- [Hygon DCU](./docs/get_started/installation/hygon_dcu.md)
- [MetaX GPU](./docs/get_started/installation/metax_gpu.md)
- [Intel Gaudi](./docs/get_started/installation/intel_gaudi.md)
**Note:** We are actively working on expanding hardware support. Additional hardware platforms including Ascend NPU are currently under development and testing. Stay tuned for updates!
**Note:** We are actively working on expanding hardware support. Additional hardware platforms including Ascend NPU and MetaX GPU are currently under development and testing. Stay tuned for updates!
## Get Started
@@ -72,12 +68,20 @@ Learn how to use FastDeploy through our documentation:
- [ERNIE-4.5-VL Multimodal Model Deployment](./docs/get_started/ernie-4.5-vl.md)
- [Offline Inference Development](./docs/offline_inference.md)
- [Online Service Deployment](./docs/online_serving/README.md)
- [Full Supported Models List](./docs/supported_models.md)
- [Best Practices](./docs/best_practices/README.md)
## Supported Models
Learn how to download models, enable using the torch format, and more:
- [Full Supported Models List](./docs/supported_models.md)
| Model | Data Type | PD Disaggregation | Chunked Prefill | Prefix Caching | MTP | CUDA Graph | Maximum Context Length |
|:--- | :------- | :---------- | :-------- | :-------- | :----- | :----- | :----- |
|ERNIE-4.5-300B-A47B | BF16/WINT4/WINT8/W4A8C8/WINT2/FP8 | ✅| ✅ | ✅|✅| ✅ |128K |
|ERNIE-4.5-300B-A47B-Base| BF16/WINT4/WINT8 | ✅| ✅ | ✅|❌| ✅ | 128K |
|ERNIE-4.5-VL-424B-A47B | BF16/WINT4/WINT8 | WIP | ✅ | WIP | ❌ | WIP |128K |
|ERNIE-4.5-VL-28B-A3B | BF16/WINT4/WINT8 | ❌ | ✅ | WIP | ❌ | WIP |128K |
|ERNIE-4.5-21B-A3B | BF16/WINT4/WINT8/FP8 | ❌ | ✅ | ✅ | ✅ | ✅|128K |
|ERNIE-4.5-21B-A3B-Base | BF16/WINT4/WINT8/FP8 | ✅ | ✅ | ✅ | ❌ | ✅|128K |
|ERNIE-4.5-0.3B | BF16/WINT8/FP8 | ✅ | ✅ | ✅ | ❌ | ✅| 128K |
## Advanced Usage

View File

@@ -26,9 +26,7 @@
# FastDeploy :基于飞桨的大语言模型与视觉语言模型推理部署工具包
## 最新活动
**[2025-09] 🔥 FastDeploy v2.2 全新发布**: HuggingFace生态模型兼容性能进一步优化更新增对[baidu/ERNIE-21B-A3B-Thinking](https://huggingface.co/baidu/ERNIE-4.5-21B-A3B-Thinking)支持!
**[2025-08] FastDeploy v2.1 发布**:全新的KV Cache调度策略更多模型支持PD分离和CUDA Graph昆仑、海光等更多硬件支持增强全方面优化服务和推理引擎的性能。
**[2025-08] 🔥 FastDeploy v2.1 全新发布:** 全新的KV Cache调度策略更多模型支持PD分离和CUDA Graph昆仑、海光等更多硬件支持增强全方面优化服务和推理引擎的性能。
**[2025-07] 《FastDeploy2.0推理部署实测》专题活动已上线!** 完成文心4.5系列开源模型的推理部署等任务即可获得骨瓷马克杯等FastDeploy2.0官方周边及丰富奖金!🎁 欢迎大家体验反馈~ 📌[报名地址](https://www.wjx.top/vm/meSsp3L.aspx#) 📌[活动详情](https://github.com/PaddlePaddle/FastDeploy/discussions/2728)
@@ -41,7 +39,7 @@
- 🤝 **OpenAI API服务与vLLM兼容**:单命令部署,兼容[vLLM](https://github.com/vllm-project/vllm/)接口
- 🧮 **全量化格式支持**W8A16、W8A8、W4A16、W4A8、W2A16、FP8等
-**高级加速技术**推测解码、多令牌预测MTP及分块预填充
- 🖥️ **多硬件支持**NVIDIA GPU、昆仑芯XPU、海光DCU、昇腾NPU、天数智芯GPU、燧原GCU、沐曦GPU、英特尔Gaudi
- 🖥️ **多硬件支持**NVIDIA GPU、昆仑芯XPU、海光DCU、昇腾NPU、天数智芯GPU、燧原GCU、沐曦GPU等
## 要求
@@ -57,10 +55,8 @@ FastDeploy 支持在**英伟达NVIDIAGPU**、**昆仑芯KunlunxinXPU
- [天数 CoreX](./docs/zh/get_started/installation/iluvatar_gpu.md)
- [燧原 S60](./docs/zh/get_started/installation/Enflame_gcu.md)
- [海光 DCU](./docs/zh/get_started/installation/hygon_dcu.md)
- [沐曦 GPU](./docs/zh/get_started/installation/metax_gpu.md)
- [英特尔 Gaudi](./docs/zh/get_started/installation/intel_gaudi.md)
**注意:** 我们正在积极拓展硬件支持范围。目前包括昇腾AscendNPU 其他硬件平台正在开发测试中。敬请关注更新!
**注意:** 我们正在积极拓展硬件支持范围。目前包括昇腾AscendNPU 和 沐曦MetaXGPU 在内的其他硬件平台正在开发测试中。敬请关注更新!
## 入门指南
@@ -70,12 +66,20 @@ FastDeploy 支持在**英伟达NVIDIAGPU**、**昆仑芯KunlunxinXPU
- [ERNIE-4.5-VL 部署](./docs/zh/get_started/ernie-4.5-vl.md)
- [离线推理](./docs/zh/offline_inference.md)
- [在线服务](./docs/zh/online_serving/README.md)
- [模型支持列表](./docs/zh/supported_models.md)
- [最佳实践](./docs/zh/best_practices/README.md)
## 支持模型列表
通过我们的文档了解如何下载模型如何支持torch格式等
- [模型支持列表](./docs/zh/supported_models.md)
| Model | Data Type | PD Disaggregation | Chunked Prefill | Prefix Caching | MTP | CUDA Graph | Maximum Context Length |
|:--- | :------- | :---------- | :-------- | :-------- | :----- | :----- | :----- |
|ERNIE-4.5-300B-A47B | BF16/WINT4/WINT8/W4A8C8/WINT2/FP8 | ✅| ✅ | ✅|✅| ✅ |128K |
|ERNIE-4.5-300B-A47B-Base| BF16/WINT4/WINT8 | ✅| ✅ | ✅|❌| ✅ | 128K |
|ERNIE-4.5-VL-424B-A47B | BF16/WINT4/WINT8 | WIP | ✅ | WIP | ❌ | WIP |128K |
|ERNIE-4.5-VL-28B-A3B | BF16/WINT4/WINT8 | ❌ | ✅ | WIP | ❌ | WIP |128K |
|ERNIE-4.5-21B-A3B | BF16/WINT4/WINT8/FP8 | ❌ | ✅ | ✅ | ✅ | ✅|128K |
|ERNIE-4.5-21B-A3B-Base | BF16/WINT4/WINT8/FP8 | ✅ | ✅ | ✅ | ❌ | ✅|128K |
|ERNIE-4.5-0.3B | BF16/WINT8/FP8 | ✅ | ✅ | ✅ | ❌ | ✅| 128K |
## 进阶用法

View File

@@ -58,12 +58,10 @@ class RequestFuncOutput:
"""Output for requesting LLMs via API"""
no: int = 0
request_id: str = ""
generated_text: str = ""
reasoning_content: str = ""
success: bool = False
latency: float = 0.0
end_timestamp: float = 0.0 # 模型完全返回的时间戳(秒, perf_counter基准
output_tokens: int = 0
ttft: float = 0.0 # Time to first token
arrival_time: list = field(default_factory=list) # arrival_time
@@ -112,14 +110,12 @@ async def async_request_eb_openai_chat_completions(
output = RequestFuncOutput()
output.prompt_len = 0
output.no = request_func_input.no
request_id = "None"
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload, headers=headers) as response:
data = {}
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
@@ -128,13 +124,10 @@ async def async_request_eb_openai_chat_completions(
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
if chunk != "[DONE]":
#print("####chunk:", chunk, type(chunk))
# print("####chunk:", chunk, type(chunk))
timestamp = time.perf_counter()
data = json.loads(chunk)
if request_id == "None" and "id" in data:
request_id = data["id"]
if choices := data.get("choices"):
content = choices[0]["delta"].get("content")
reason_content = choices[0]["delta"].get("reasoning_content")
@@ -143,12 +136,9 @@ async def async_request_eb_openai_chat_completions(
ttft = timestamp - st
output.ttft = ttft
# cached_tokens
if data["usage"] and data["usage"].get("prompt_tokens_details", {}):
output.prompt_len = (
data["usage"].get("prompt_tokens_details", {}).get("cached_tokens", 0)
)
else:
output.prompt_len = 0
output.prompt_len = (
data["usage"].get("prompt_tokens_details", {}).get("cached_tokens", 0)
)
# Decoding phase
else:
@@ -160,13 +150,10 @@ async def async_request_eb_openai_chat_completions(
elif usage := data.get("usage", {}):
output.output_tokens = usage.get("completion_tokens", 0)
output.prompt_tokens = usage.get("prompt_tokens", 0)
most_recent_timestamp = timestamp
# output.generated_text = generated_text
# 在流式结束时,记录最后一个 chunk 收到的时间戳
output.end_timestamp = most_recent_timestamp
if output.generated_text.strip() == "":
output.success = False
output.error = "No generated text found!"
@@ -188,8 +175,6 @@ async def async_request_eb_openai_chat_completions(
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
output.request_id = request_id
# 保存失败请求结果
if not output.success:
with open("error_output.txt", "a") as f:

View File

@@ -98,7 +98,7 @@ def main(args):
raise ValueError("--max_concurrency should be same length as --s_itl_base_model")
for max_concurrency, s_itl in zip(args.max_concurrency, args.s_itl_base_model):
# Warmup
# Wramup
print("Starting warmup...")
with open(os.devnull, "w") as f:
with contextlib.redirect_stdout(f):

View File

@@ -150,7 +150,7 @@ async def get_request(
def calculate_metrics(
# input_requests: list[SampleRequest],
input_requests: list[SampleRequest],
outputs: list[RequestFuncOutput],
dur_s: float,
selected_percentiles: list[float],
@@ -177,7 +177,7 @@ def calculate_metrics(
output_len = outputs[i].output_tokens
if not output_len:
print("no output_len", outputs[i])
print("no output_len")
# We use the tokenizer to count the number of output tokens
# for some serving backends instead of looking at
# len(outputs[i].itl) since multiple output tokens may be
@@ -395,7 +395,6 @@ async def benchmark(
print(f"Traffic request rate: {request_rate}")
print(f"Burstiness factor: {burstiness} ({distribution})")
print(f"Maximum request concurrency: {max_concurrency}")
print(f"Drop ratio: {args.drop_ratio}")
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
@@ -444,8 +443,6 @@ async def benchmark(
tasks.append(asyncio.create_task(limited_request_func(request_func_input=request_func_input, pbar=pbar)))
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
outputs.sort(key=lambda x: x.end_timestamp)
if profile:
print("Stopping profiler...")
profile_input = RequestFuncInput(
@@ -463,35 +460,12 @@ async def benchmark(
if pbar is not None:
pbar.close()
benchmark_outputs = outputs
drop_ratio = args.drop_ratio
if 0.0 < drop_ratio < 1:
# 按drop_ratio头尾各舍弃一半请求不计入benchmark统计
n = len(outputs)
drop_count = int(n * drop_ratio)
half = drop_count // 2
if half > 0:
benchmark_outputs = outputs[half : n - half]
# 先过滤掉 end_timestamp == 0.0 的请求(失败请求)
benchmark_outputs = [o for o in benchmark_outputs if o.end_timestamp != 0.0]
# 根据收到最后一个chunk的时间戳计算总时长
if len(benchmark_outputs) >= 2:
benchmark_duration = benchmark_outputs[-1].end_timestamp - benchmark_outputs[0].end_timestamp
else:
benchmark_duration = 0.0
print(f"丢弃前数量: {n}")
print(f"丢弃后数量: {len(benchmark_outputs)}")
print(f"benchmark_duration: {benchmark_duration}")
else:
benchmark_duration = time.perf_counter() - benchmark_start_time
print(f"benchmark_duration: {benchmark_duration}")
benchmark_duration = time.perf_counter() - benchmark_start_time
print("benchmark_duration:", benchmark_duration)
metrics, actual_output_lens = calculate_metrics(
# input_requests=input_requests,
outputs=benchmark_outputs,
input_requests=input_requests,
outputs=outputs,
dur_s=benchmark_duration,
# tokenizer=tokenizer,
selected_percentiles=selected_percentiles,
@@ -520,7 +494,7 @@ async def benchmark(
"total_token_throughput": metrics.total_token_throughput,
"input_lens": [output.prompt_len for output in outputs],
"infer_input_lens": [output.prompt_tokens for output in outputs],
"output_lens": [output.output_tokens for output in outputs],
"output_lens": actual_output_lens,
"ttfts": [output.ttft for output in outputs],
"itls": [output.itl for output in outputs],
"input_texts": [input.prompt for input in input_requests],
@@ -635,7 +609,7 @@ def benchmark_metrics(
goodput_config_dict = check_goodput_args(args)
metrics, actual_output_lens = calculate_metrics(
# input_requests=input_requests,
input_requests=input_requests,
outputs=outputs,
dur_s=benchmark_duration,
selected_percentiles=selected_percentiles,
@@ -991,7 +965,7 @@ if __name__ == "__main__":
parser.add_argument(
"--backend",
type=str,
default="openai-chat",
default="vllm",
choices=list(ASYNC_REQUEST_FUNCS.keys()),
)
parser.add_argument(
@@ -1107,12 +1081,6 @@ if __name__ == "__main__":
action="store_true",
help="shuffle dataset",
)
parser.add_argument(
"--drop-ratio",
type=float,
default=0.0,
help="Drop ratio of the outputs. [0, 1)",
)
parser.add_argument(
"--trust-remote-code",
action="store_true",

View File

@@ -1,5 +0,0 @@
max_model_len: 32768
max_num_seqs: 128
tensor_parallel_size: 4
use_cudagraph: True
load_choices: "default_v1"

View File

@@ -1,6 +0,0 @@
max_model_len: 32768
max_num_seqs: 128
tensor_parallel_size: 4
use_cudagraph: True
load_choices: "default_v1"
quantization: wfp8afp8

View File

@@ -1,9 +0,0 @@
quantization: wint4
load_choices: "default_v1"
graph_optimization_config:
use_cudagraph: True
use_unique_memory_pool: True
enable_prefix_caching: False
max_num_seqs: 256
max_model_len: 32768
tensor_parallel_size: 8

View File

@@ -6,4 +6,3 @@ tensor_parallel_size: 8
max_num_batched_tokens: 4096
max_num_partial_prefills: 3
max_long_partial_prefills: 3
quantization: wint4

View File

@@ -1,6 +0,0 @@
tensor_parallel_size: 1
max_model_len: 131072
max_num_seqs: 32
quantization: wint4
max_num_batched_tokens: 8192
plas_attention_config: '{"plas_encoder_top_k_left": 50, "plas_encoder_top_k_right": 60, "plas_decoder_top_k_left": 100, "plas_decoder_top_k_right": 120}'

View File

@@ -6,4 +6,3 @@ tensor_parallel_size: 8
max_num_batched_tokens: 4096
max_num_partial_prefills: 3
max_long_partial_prefills: 3
quantization: wint8

View File

@@ -1,5 +0,0 @@
max_model_len: 32768
max_num_seqs: 256
kv_cache_ratio: 0.75
tensor_parallel_size: 4
gpu_memory_utilization: 0.9

View File

@@ -1,6 +1,6 @@
max_model_len: 32768
max_num_seqs: 96
gpu_memory_utilization: 0.85
gpu_memory_utilization: 0.9
kv_cache_ratio: 0.71
tensor_parallel_size: 4
quantization: wint4

View File

@@ -1,6 +1,6 @@
max_model_len: 32768
max_num_seqs: 96
gpu_memory_utilization: 0.85
gpu_memory_utilization: 0.9
kv_cache_ratio: 0.71
tensor_parallel_size: 4
quantization: wint4

View File

@@ -13,4 +13,3 @@ pd_comm_port: "2334"
max_num_batched_tokens: 384
max_num_partial_prefills: 3
max_long_partial_prefills: 3
quantization: wint4

View File

@@ -10,4 +10,3 @@ engine_worker_queue_port: 6677
cache_transfer_protocol: "rdma,ipc"
rdma_comm_ports: "7675,7676,7677,7678"
pd_comm_port: "2333"
quantization: wint4

View File

@@ -1,6 +1,6 @@
max_model_len: 32768
max_num_seqs: 96
gpu_memory_utilization: 0.85
gpu_memory_utilization: 0.9
kv_cache_ratio: 0.71
tensor_parallel_size: 8
quantization: wint8

View File

@@ -1,6 +0,0 @@
num_gpu_blocks_override: 1024
max_model_len: 8192
max_num_seqs: 64
data_parallel_size: 8
tensor_parallel_size: 1
enable_expert_parallel: True

View File

@@ -1,11 +0,0 @@
enable_mm: True
max_model_len: 131072
max_num_seqs: 56
gpu_memory_utilization: 0.8
kv_cache_ratio: 0.8
tensor_parallel_size: 8
quantization: wint4
limit_mm_per_prompt: '{"image": 100, "video": 100}'
enable_chunked_prefill: True
max_num_batched_tokens: 384
reasoning_parser: ernie-45-vl

View File

@@ -1,7 +1,7 @@
enable_mm: True
max_model_len: 32768
max_num_seqs: 36
gpu_memory_utilization: 0.9
gpu_memory_utilization: 0.95
kv_cache_ratio: 0.8
tensor_parallel_size: 8
quantization: wint8

View File

@@ -1,7 +1,7 @@
enable_mm: True
max_model_len: 32768
max_num_seqs: 36
gpu_memory_utilization: 0.85
gpu_memory_utilization: 0.8
kv_cache_ratio: 0.8
tensor_parallel_size: 8
quantization: wint8

View File

@@ -1,9 +0,0 @@
enable_mm: True
max_model_len: 32768
max_num_seqs: 128
gpu_memory_utilization: 0.9
kv_cache_ratio: 0.71
tensor_parallel_size: 1
enable_chunked_prefill: True
max_num_batched_tokens: 384
reasoning_parser: ernie-45-vl

View File

@@ -1,10 +0,0 @@
enable_mm: True
max_model_len: 32768
max_num_seqs: 128
gpu_memory_utilization: 0.9
kv_cache_ratio: 0.71
tensor_parallel_size: 1
enable_chunked_prefill: True
max_num_batched_tokens: 384
quantization: wint4
reasoning_parser: ernie-45-vl

View File

@@ -1,10 +0,0 @@
enable_mm: True
max_model_len: 32768
max_num_seqs: 128
gpu_memory_utilization: 0.9
kv_cache_ratio: 0.71
tensor_parallel_size: 1
enable_chunked_prefill: True
max_num_batched_tokens: 384
quantization: wint8
reasoning_parser: ernie-45-vl

View File

@@ -1,8 +0,0 @@
top_p: 0.95
temperature: 0.6
metadata:
min_tokens: 1
max_tokens: 12288
repetition_penalty: 1.0
frequency_penalty: 0
presence_penalty: 0

View File

@@ -1 +0,0 @@
max_tokens: 131071

View File

@@ -1 +0,0 @@
max_tokens: 12288

View File

@@ -1,11 +0,0 @@
top_p: 0.8
temperature: 0.8
max_tokens: 12288
repetition_penalty: 1.0
frequency_penalty: 0
presence_penalty: 0
metadata:
enable_thinking: false
min_tokens: 1
chat_template_kwargs:
enable_thinking: false

View File

@@ -1,10 +1,11 @@
temperature: 0.8
top_p: 0.8
presence_penalty: 0
repetition_penalty: 1.0
frequency_penalty: 0
max_tokens: 12288
top_p: 1.0
temperature: 1.0
metadata:
min_tokens: 1
max_tokens: 30721
repetition_penalty: 1.0
frequency_penalty: 0
presence_penalty: 0
skip_special_tokens: false
chat_template_kwargs:
enable_thinking: false
enable_thinking: true

View File

@@ -1,8 +0,0 @@
top_p: 0.95
temperature: 0.6
metadata:
min_tokens: 1
max_tokens: 131071
repetition_penalty: 1.0
frequency_penalty: 0
presence_penalty: 0

View File

@@ -1,10 +0,0 @@
reasoning-parser: ernie-x1
tool_call_parser: ernie-x1
tensor_parallel_size: 4
max_model_len: 65536
max_num_seqs: 128
enable_prefix_caching: True
enable_chunked_prefill: True
gpu_memory_utilization: 0.85
graph_optimization_config:
use_cudagraph: True

View File

@@ -1,7 +0,0 @@
tensor_parallel_size: 1
max_model_len: 131072
max_num_seqs: 32
reasoning_parser: ernie-x1
tool_call_parser: ernie-x1
load_choices: "default_v1"
quantization: wint8

View File

@@ -34,6 +34,7 @@ EGG_DIR="fastdeploy.egg-info"
# custom_ops directory config
OPS_SRC_DIR="custom_ops"
OPS_TMP_DIR_BASE="tmp_base"
OPS_TMP_DIR="tmp"
# command line log config
@@ -70,20 +71,25 @@ function copy_ops(){
PY_VERSION="py${PY_MAIN_VERSION}.${PY_SUB_VERSION}"
SYSTEM_VERSION=`${python} -c "import platform; print(platform.system().lower())"`
PROCESSOR_VERSION=`${python} -c "import platform; print(platform.processor())"`
WHEEL_BASE_NAME="fastdeploy_base_ops-${OPS_VERSION}-${PY_VERSION}-${SYSTEM_VERSION}-${PROCESSOR_VERSION}.egg"
WHEEL_NAME="fastdeploy_ops-${OPS_VERSION}-${PY_VERSION}-${SYSTEM_VERSION}-${PROCESSOR_VERSION}.egg"
WHEEL_CPU_NAME="fastdeploy_cpu_ops-${OPS_VERSION}-${PY_VERSION}-${SYSTEM_VERSION}-${PROCESSOR_VERSION}.egg"
is_rocm=`$python -c "import paddle; print(paddle.is_compiled_with_rocm())"`
if [ "$is_rocm" = "True" ]; then
DEVICE_TYPE="rocm"
mkdir -p ../fastdeploy/model_executor/ops/base
cp -r ./${OPS_TMP_DIR_BASE}/${WHEEL_BASE_NAME}/* ../fastdeploy/model_executor/ops/base
cp -r ./${OPS_TMP_DIR}/${WHEEL_NAME}/* ../fastdeploy/model_executor/ops/gpu
echo -e "ROCM ops have been copy to fastdeploy"
echo -e "BASE and ROCM ops have been copy to fastdeploy"
return
fi
mkdir -p ../fastdeploy/model_executor/ops/base
is_cuda=`$python -c "import paddle; print(paddle.is_compiled_with_cuda())"`
if [ "$is_cuda" = "True" ]; then
DEVICE_TYPE="gpu"
cp -r ./${OPS_TMP_DIR_BASE}/${WHEEL_BASE_NAME}/* ../fastdeploy/model_executor/ops/base
cp -r ./${OPS_TMP_DIR}/${WHEEL_NAME}/* ../fastdeploy/model_executor/ops/gpu
echo -e "CUDA ops have been copy to fastdeploy"
echo -e "BASE and CUDA ops have been copy to fastdeploy"
return
fi
@@ -106,8 +112,9 @@ function copy_ops(){
if_corex=`$python -c "import paddle; print(paddle.is_compiled_with_custom_device(\"iluvatar_gpu\"))"`
if [ "$if_corex" = "True" ]; then
DEVICE_TYPE="iluvatar-gpu"
cp -r ./${OPS_TMP_DIR_BASE}/${WHEEL_BASE_NAME}/* ../fastdeploy/model_executor/ops/base
cp -r ./${OPS_TMP_DIR}/${WHEEL_NAME}/* ../fastdeploy/model_executor/ops/iluvatar
echo -e "Iluvatar ops have been copy to fastdeploy"
echo -e "BASE and Iluvatar ops have been copy to fastdeploy"
return
fi
@@ -119,39 +126,27 @@ function copy_ops(){
return
fi
is_maca=`$python -c "import paddle; print(paddle.device.is_compiled_with_custom_device('metax_gpu'))"`
if [ "$is_maca" = "True" ]; then
DEVICE_TYPE="metax_gpu"
mkdir -p ../fastdeploy/model_executor/ops/base
cp -r ./${OPS_TMP_DIR_BASE}/${WHEEL_BASE_NAME}/* ../fastdeploy/model_executor/ops/base
cp -r ./${OPS_TMP_DIR}/${WHEEL_NAME}/* ../fastdeploy/model_executor/ops/gpu
echo -e "MACA ops have been copy to fastdeploy"
return
fi
is_intel_hpu=`$python -c "import paddle; print(paddle.is_compiled_with_custom_device('intel_hpu'))"`
if [ "$is_intel_hpu" = "True" ]; then
DEVICE_TYPE="intel-hpu"
echo -e "intel_hpu ops have been copy to fastdeploy"
return
fi
DEVICE_TYPE="cpu"
cp -r ./${OPS_TMP_DIR_BASE}/${WHEEL_BASE_NAME}/* ../fastdeploy/model_executor/ops/base
cd ../../../../
cp -r ${OPS_TMP_DIR}/${WHEEL_CPU_NAME}/* ../fastdeploy/model_executor/ops/cpu
echo -e "CPU ops have been copy to fastdeploy"
echo -e "BASE and CPU ops have been copy to fastdeploy"
return
}
function build_and_install_ops() {
cd $OPS_SRC_DIR
export no_proxy=bcebos.com,paddlepaddle.org.cn,${no_proxy}
echo -e "${BLUE}[build]${NONE} build and install fastdeploy_base_ops..."
${python} setup_ops_base.py install --install-lib ${OPS_TMP_DIR_BASE}
find ${OPS_TMP_DIR_BASE} -type f -name "*.o" -exec rm -f {} \;
echo -e "${BLUE}[build]${NONE} build and install fastdeploy_ops..."
TMP_DIR_REAL_PATH=`readlink -f ${OPS_TMP_DIR}`
is_xpu=`$python -c "import paddle; print(paddle.is_compiled_with_xpu())"`
if [ "$is_xpu" = "True" ]; then
cd xpu_ops
cd xpu_ops/src
bash build.sh ${TMP_DIR_REAL_PATH}
cd ..
cd ../..
elif [ "$FD_CPU_USE_BF16" == "true" ]; then
if [ "$FD_BUILDING_ARCS" == "" ]; then
FD_CPU_USE_BF16=True ${python} setup_ops.py install --install-lib ${OPS_TMP_DIR}
@@ -165,9 +160,7 @@ function build_and_install_ops() {
else
FD_BUILDING_ARCS=${FD_BUILDING_ARCS} ${python} setup_ops.py install --install-lib ${OPS_TMP_DIR}
fi
if [ -d "${OPS_TMP_DIR}" ]; then
find ${OPS_TMP_DIR} -type f -name "*.o" -exec rm -f {} \;
fi
find ${OPS_TMP_DIR} -type f -name "*.o" -exec rm -f {} \;
else
echo "Error: Invalid parameter '$FD_CPU_USE_BF16'. Please use true or false."
exit 1
@@ -220,6 +213,7 @@ function cleanup() {
fi
rm -rf $OPS_SRC_DIR/$BUILD_DIR $OPS_SRC_DIR/$EGG_DIR
rm -rf $OPS_SRC_DIR/$OPS_TMP_DIR_BASE
rm -rf $OPS_SRC_DIR/$OPS_TMP_DIR
}

View File

@@ -19,28 +19,28 @@ std::vector<paddle::Tensor> InvokeAvxWeightOnly(const paddle::Tensor &x,
const paddle::Tensor &w_bias,
const std::string &alog,
bool trans) {
auto out_shape = x.shape();
out_shape[out_shape.size() - 1] = weight.shape()[1];
auto out = paddle::empty(out_shape, x.dtype(), paddle::CPUPlace());
return {out};
auto out_shape = x.shape();
out_shape[out_shape.size() - 1] = weight.shape()[1];
auto out = paddle::empty(out_shape, x.dtype(), paddle::CPUPlace());
return {out};
}
std::vector<std::vector<int64_t>> AvxWeightOnlyInferShape(
std::vector<int64_t> x_shape,
std::vector<int64_t> weigh_shape,
std::vector<int64_t> weigh_bias_shape) {
int m = 1;
for (int i = 0; i < x_shape.size() - 1; i++) {
m = m * x_shape[i];
}
return {std::vector<int64_t>{m, weigh_shape[1]}};
int m = 1;
for (int i = 0; i < x_shape.size() - 1; i++) {
m = m * x_shape[i];
}
return {std::vector<int64_t>{m, weigh_shape[1]}};
}
std::vector<paddle::DataType> AvxWeightOnlyInferDtype(
paddle::DataType x_dtype,
paddle::DataType weight_dtype,
paddle::DataType weight_bias_dtype) {
return {x_dtype};
return {x_dtype};
}
PD_BUILD_STATIC_OP(avx_weight_only)

View File

@@ -20,13 +20,13 @@ void remove_padding(int64_t *output_data,
const int *cum_offsets,
const int sequence_length,
const int bsz) {
for (int bi = 0; bi < bsz; ++bi) {
for (int i = 0; i < seq_lens[bi]; ++i) {
const int tgt_seq_id = bi * sequence_length - cum_offsets[bi] + i;
const int src_seq_id = bi * sequence_length + i;
output_data[tgt_seq_id] = input_data[src_seq_id];
for (int bi = 0; bi < bsz; ++bi) {
for (int i = 0; i < seq_lens[bi]; ++i) {
const int tgt_seq_id = bi * sequence_length - cum_offsets[bi] + i;
const int src_seq_id = bi * sequence_length + i;
output_data[tgt_seq_id] = input_data[src_seq_id];
}
}
}
}
void get_padding_offset_kernel(int *padding_offset,
@@ -37,53 +37,57 @@ void get_padding_offset_kernel(int *padding_offset,
const int *seq_lens,
const int max_seq_len,
const int bsz) {
for (int bi = 0; bi < bsz; ++bi) {
int cum_offset = bi == 0 ? 0 : cum_offsets[bi - 1];
auto seq_len_now = seq_lens[bi];
for (int i = 0; i < seq_len_now; ++i) {
padding_offset[bi * max_seq_len - cum_offset + i] = cum_offset;
for (int bi = 0; bi < bsz; ++bi) {
int cum_offset = bi == 0 ? 0 : cum_offsets[bi - 1];
auto seq_len_now = seq_lens[bi];
for (int i = 0; i < seq_len_now; ++i) {
padding_offset[bi * max_seq_len - cum_offset + i] = cum_offset;
}
cum_offsets_out[bi] = cum_offset;
int cum_seq_len = (bi + 1) * max_seq_len - cum_offsets[bi];
cu_seqlens_q[bi + 1] = cum_seq_len;
cu_seqlens_k[bi + 1] = cum_seq_len;
}
cum_offsets_out[bi] = cum_offset;
int cum_seq_len = (bi + 1) * max_seq_len - cum_offsets[bi];
cu_seqlens_q[bi + 1] = cum_seq_len;
cu_seqlens_k[bi + 1] = cum_seq_len;
}
}
std::vector<paddle::Tensor> GetPaddingOffset(const paddle::Tensor &input_ids,
const paddle::Tensor &cum_offsets,
const paddle::Tensor &token_num,
const paddle::Tensor &seq_len) {
std::vector<int64_t> input_ids_shape = input_ids.shape();
const int bsz = seq_len.shape()[0];
const int seq_length = input_ids_shape[1];
auto cum_offsets_out = cum_offsets.copy_to(paddle::CPUPlace(), false);
auto cpu_token_num = token_num.copy_to(paddle::CPUPlace(), false);
std::vector<int64_t> input_ids_shape = input_ids.shape();
const int bsz = seq_len.shape()[0];
const int seq_length = input_ids_shape[1];
auto cum_offsets_out = cum_offsets.copy_to(paddle::CPUPlace(), false);
auto cpu_token_num = token_num.copy_to(paddle::CPUPlace(), false);
const int token_num_data = cpu_token_num.data<int64_t>()[0];
auto x_remove_padding = paddle::empty(
{token_num_data}, paddle::DataType::INT64, input_ids.place());
auto padding_offset = paddle::empty(
{token_num_data}, paddle::DataType::INT32, input_ids.place());
auto cu_seqlens_q =
paddle::full({bsz + 1}, 0, paddle::DataType::INT32, input_ids.place());
auto cu_seqlens_k =
paddle::full({bsz + 1}, 0, paddle::DataType::INT32, input_ids.place());
get_padding_offset_kernel(padding_offset.data<int>(),
cum_offsets_out.data<int>(),
cu_seqlens_q.data<int>(),
cu_seqlens_k.data<int>(),
cum_offsets.data<int>(),
seq_len.data<int>(),
seq_length,
bsz);
remove_padding(x_remove_padding.data<int64_t>(),
input_ids.data<int64_t>(),
seq_len.data<int>(),
cum_offsets_out.data<int>(),
seq_length,
bsz);
return {x_remove_padding, padding_offset, cu_seqlens_q, cu_seqlens_k};
const int token_num_data = cpu_token_num.data<int64_t>()[0];
auto x_remove_padding = paddle::empty(
{token_num_data}, paddle::DataType::INT64, input_ids.place());
auto padding_offset = paddle::empty(
{token_num_data}, paddle::DataType::INT32, input_ids.place());
auto cu_seqlens_q =
paddle::full({bsz + 1}, 0, paddle::DataType::INT32, input_ids.place());
auto cu_seqlens_k =
paddle::full({bsz + 1}, 0, paddle::DataType::INT32, input_ids.place());
get_padding_offset_kernel(padding_offset.data<int>(),
cum_offsets_out.data<int>(),
cu_seqlens_q.data<int>(),
cu_seqlens_k.data<int>(),
cum_offsets.data<int>(),
seq_len.data<int>(),
seq_length,
bsz);
remove_padding(x_remove_padding.data<int64_t>(),
input_ids.data<int64_t>(),
seq_len.data<int>(),
cum_offsets_out.data<int>(),
seq_length,
bsz);
return {x_remove_padding,
cum_offsets_out,
padding_offset,
cu_seqlens_q,
cu_seqlens_k};
}
std::vector<std::vector<int64_t>> GetPaddingOffsetInferShape(
@@ -91,9 +95,9 @@ std::vector<std::vector<int64_t>> GetPaddingOffsetInferShape(
const std::vector<int64_t> &cum_offsets_shape,
const std::vector<int64_t> &token_num_shape,
const std::vector<int64_t> &seq_len_shape) {
int64_t bsz = seq_len_shape[0];
int64_t seq_len = input_ids_shape[1];
return {{-1}, {-1}, {bsz + 1}, {bsz + 1}};
int64_t bsz = seq_len_shape[0];
int64_t seq_len = input_ids_shape[1];
return {{-1}, {bsz}, {-1}, {bsz + 1}, {bsz + 1}};
}
std::vector<paddle::DataType> GetPaddingOffsetInferDtype(
@@ -101,13 +105,20 @@ std::vector<paddle::DataType> GetPaddingOffsetInferDtype(
const paddle::DataType &cum_offsets_dtype,
const paddle::DataType &token_num_dtype,
const paddle::DataType &seq_len_dtype) {
return {input_ids_dtype, seq_len_dtype, seq_len_dtype, seq_len_dtype};
return {input_ids_dtype,
seq_len_dtype,
seq_len_dtype,
seq_len_dtype,
seq_len_dtype};
}
PD_BUILD_STATIC_OP(get_padding_offset_cpu)
.Inputs({"input_ids", "cum_offsets", "token_num", "seq_len"})
.Outputs(
{"x_remove_padding", "padding_offset", "cu_seqlens_q", "cu_seqlens_k"})
.Outputs({"x_remove_padding",
"cum_offsets_out",
"padding_offset",
"cu_seqlens_q",
"cu_seqlens_k"})
.SetKernelFn(PD_KERNEL(GetPaddingOffset))
.SetInferShapeFn(PD_INFER_SHAPE(GetPaddingOffsetInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(GetPaddingOffsetInferDtype));

View File

@@ -1,4 +1,4 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
@@ -22,40 +22,39 @@
template <typename T>
void RebuildPaddingCPUImpl(T *output_data,
const T *input_data,
const int *cu_seqlens_q_data,
const int *cum_offsets_data,
const int *seq_len_this_time_data,
const int *seq_lens_decoder_data,
const int *seq_lens_encoder_data,
int max_input_length,
int dim_embed,
const int elem_nums) {
for (int i = 0; i < elem_nums; ++i) {
const int bi = i / dim_embed;
const int bias_idx = i % dim_embed;
int seq_id = 0;
for (int i = 0; i < elem_nums; ++i) {
const int bi = i / dim_embed;
const int bias_idx = i % dim_embed;
int seq_id = 0;
if (seq_len_this_time_data[bi] == 0) {
continue;
if (seq_len_this_time_data[bi] == 0) {
continue;
}
if (seq_lens_decoder_data[bi] == 0 && seq_lens_encoder_data[bi] == 0) {
continue;
}
if (seq_lens_encoder_data[bi] > 0) {
seq_id = seq_lens_encoder_data[bi] - 1;
}
const int ori_token_idx =
bi * max_input_length - cum_offsets_data[bi] + seq_id;
const int src_offset = ori_token_idx * dim_embed + bias_idx;
output_data[i] = input_data[src_offset];
}
if (seq_lens_decoder_data[bi] == 0 && seq_lens_encoder_data[bi] == 0) {
continue;
}
if (seq_lens_encoder_data[bi] > 0) {
seq_id = seq_lens_encoder_data[bi] - 1;
}
const int ori_token_idx = cu_seqlens_q_data[bi] + seq_id;
const int src_offset = ori_token_idx * dim_embed + bias_idx;
output_data[i] = input_data[src_offset];
}
}
template <typename T>
void RebuildAppendPaddingCPUImpl(T *output_data,
const T *input_data,
const int *cu_seqlens_q_data,
const int *cum_offsets_data,
const int *seq_len_this_time_data,
const int *seq_lens_decoder_data,
const int *seq_lens_encoder_data,
@@ -63,199 +62,201 @@ void RebuildAppendPaddingCPUImpl(T *output_data,
const int max_input_length,
const int dim_embed,
const int64_t output_elem_nums) {
for (int i = 0; i < output_elem_nums; ++i) {
int out_token_id = i / dim_embed;
int ori_token_id = out_token_id + output_padding_offset_data[out_token_id];
int bi = ori_token_id / max_input_length;
if (seq_len_this_time_data[bi] == 0 ||
(seq_lens_decoder_data[bi] == 0 && seq_lens_encoder_data[bi] == 0)) {
continue;
for (int i = 0; i < output_elem_nums; ++i) {
int out_token_id = i / dim_embed;
int ori_token_id =
out_token_id + output_padding_offset_data[out_token_id];
int bi = ori_token_id / max_input_length;
if (seq_len_this_time_data[bi] == 0 ||
(seq_lens_decoder_data[bi] == 0 &&
seq_lens_encoder_data[bi] == 0)) {
continue;
}
int seq_id = 0;
if (seq_lens_encoder_data[bi] > 0) {
seq_id = seq_lens_encoder_data[bi] - 1;
}
int input_token_id = ori_token_id - cum_offsets_data[bi] + seq_id;
int bias_idx = i % dim_embed;
int src_offset = input_token_id * dim_embed + bias_idx;
output_data[i] = input_data[src_offset];
}
int seq_id = 0;
if (seq_lens_encoder_data[bi] > 0) {
seq_id = seq_lens_encoder_data[bi] - 1;
}
int input_token_id = cu_seqlens_q_data[bi] + seq_id;
int bias_idx = i % dim_embed;
int src_offset = input_token_id * dim_embed + bias_idx;
output_data[i] = input_data[src_offset];
}
}
std::vector<paddle::Tensor> RebuildPaddingCPU(
const paddle::Tensor &tmp_out,
const paddle::Tensor &cu_seqlens_q,
const paddle::Tensor &cum_offsets,
const paddle::Tensor &seq_len_this_time,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &seq_lens_encoder,
const paddle::optional<paddle::Tensor> &output_padding_offset,
int max_input_length) {
auto tmp_out_cpu = tmp_out.copy_to(paddle::CPUPlace(), true);
auto cu_seqlens_q_cpu = cu_seqlens_q.copy_to(paddle::CPUPlace(), true);
auto seq_len_this_time_cpu =
seq_len_this_time.copy_to(paddle::CPUPlace(), true);
auto seq_lens_decoder_cpu =
seq_lens_decoder.copy_to(paddle::CPUPlace(), true);
auto seq_lens_encoder_cpu =
seq_lens_encoder.copy_to(paddle::CPUPlace(), true);
paddle::optional<paddle::Tensor> output_padding_offset_cpu;
if (output_padding_offset) {
output_padding_offset_cpu =
output_padding_offset->copy_to(paddle::CPUPlace(), true);
}
int token_num = tmp_out_cpu.shape()[0];
int dim_embed = tmp_out_cpu.shape()[1];
int bsz = cu_seqlens_q_cpu.shape()[0] - 1;
paddle::Tensor out;
if (output_padding_offset_cpu) {
int need_delete_token_num = 0;
for (int i = 0; i < bsz; ++i) {
if (seq_lens_encoder_cpu.data<int>()[i] > 0) {
need_delete_token_num += seq_lens_encoder_cpu.data<int>()[i] - 1;
}
auto tmp_out_cpu = tmp_out.copy_to(paddle::CPUPlace(), true);
auto cum_offsets_cpu = cum_offsets.copy_to(paddle::CPUPlace(), true);
auto seq_len_this_time_cpu =
seq_len_this_time.copy_to(paddle::CPUPlace(), true);
auto seq_lens_decoder_cpu =
seq_lens_decoder.copy_to(paddle::CPUPlace(), true);
auto seq_lens_encoder_cpu =
seq_lens_encoder.copy_to(paddle::CPUPlace(), true);
paddle::optional<paddle::Tensor> output_padding_offset_cpu;
if (output_padding_offset) {
output_padding_offset_cpu =
output_padding_offset->copy_to(paddle::CPUPlace(), true);
}
int output_token_num = token_num - need_delete_token_num;
out = paddle::full({output_token_num, dim_embed},
0,
tmp_out_cpu.dtype(),
paddle::CPUPlace());
} else {
out = paddle::full(
{bsz, dim_embed}, 0, tmp_out_cpu.dtype(), paddle::CPUPlace());
}
const int *cu_seqlens_q_data = cu_seqlens_q_cpu.data<int>();
const int *seq_len_this_time_data = seq_len_this_time_cpu.data<int>();
const int *seq_lens_decoder_data = seq_lens_decoder_cpu.data<int>();
const int *seq_lens_encoder_data = seq_lens_encoder_cpu.data<int>();
int elem_nums = out.numel();
int token_num = tmp_out_cpu.shape()[0];
int dim_embed = tmp_out_cpu.shape()[1];
int bsz = cum_offsets_cpu.shape()[0];
if (output_padding_offset_cpu) {
const int *output_padding_offset_data =
output_padding_offset_cpu->data<int>();
switch (tmp_out_cpu.dtype()) {
case paddle::DataType::FLOAT32:
RebuildAppendPaddingCPUImpl<float>(out.data<float>(),
tmp_out_cpu.data<float>(),
cu_seqlens_q_data,
seq_len_this_time_data,
seq_lens_decoder_data,
seq_lens_encoder_data,
output_padding_offset_data,
max_input_length,
dim_embed,
elem_nums);
break;
case paddle::DataType::FLOAT16:
RebuildAppendPaddingCPUImpl<paddle::float16>(
out.data<paddle::float16>(),
tmp_out_cpu.data<paddle::float16>(),
cu_seqlens_q_data,
seq_len_this_time_data,
seq_lens_decoder_data,
seq_lens_encoder_data,
output_padding_offset_data,
max_input_length,
dim_embed,
elem_nums);
break;
case paddle::DataType::BFLOAT16:
RebuildAppendPaddingCPUImpl<paddle::bfloat16>(
out.data<paddle::bfloat16>(),
tmp_out_cpu.data<paddle::bfloat16>(),
cu_seqlens_q_data,
seq_len_this_time_data,
seq_lens_decoder_data,
seq_lens_encoder_data,
output_padding_offset_data,
max_input_length,
dim_embed,
elem_nums);
break;
default:
PD_THROW(
"Unsupported data type for rebuild_padding_cpu. "
"Only float32, float16, and bfloat16 are supported.");
paddle::Tensor out;
if (output_padding_offset_cpu) {
int need_delete_token_num = 0;
for (int i = 0; i < bsz; ++i) {
if (seq_lens_encoder_cpu.data<int>()[i] > 0) {
need_delete_token_num +=
seq_lens_encoder_cpu.data<int>()[i] - 1;
}
}
int output_token_num = token_num - need_delete_token_num;
out = paddle::full({output_token_num, dim_embed},
0,
tmp_out_cpu.dtype(),
paddle::CPUPlace());
} else {
out = paddle::full(
{bsz, dim_embed}, 0, tmp_out_cpu.dtype(), paddle::CPUPlace());
}
} else {
switch (tmp_out_cpu.dtype()) {
case paddle::DataType::FLOAT32:
RebuildPaddingCPUImpl<float>(out.data<float>(),
tmp_out_cpu.data<float>(),
cu_seqlens_q_data,
seq_len_this_time_data,
seq_lens_decoder_data,
seq_lens_encoder_data,
max_input_length,
dim_embed,
elem_nums);
break;
case paddle::DataType::FLOAT16:
RebuildPaddingCPUImpl<paddle::float16>(
out.data<paddle::float16>(),
tmp_out_cpu.data<paddle::float16>(),
cu_seqlens_q_data,
seq_len_this_time_data,
seq_lens_decoder_data,
seq_lens_encoder_data,
max_input_length,
dim_embed,
elem_nums);
break;
case paddle::DataType::BFLOAT16:
RebuildPaddingCPUImpl<paddle::bfloat16>(
out.data<paddle::bfloat16>(),
tmp_out_cpu.data<paddle::bfloat16>(),
cu_seqlens_q_data,
seq_len_this_time_data,
seq_lens_decoder_data,
seq_lens_encoder_data,
max_input_length,
dim_embed,
elem_nums);
break;
default:
PD_THROW(
"Unsupported data type for rebuild_padding_cpu. "
"Only float32, float16, and bfloat16 are supported.");
const int *cum_offsets_data = cum_offsets_cpu.data<int>();
const int *seq_len_this_time_data = seq_len_this_time_cpu.data<int>();
const int *seq_lens_decoder_data = seq_lens_decoder_cpu.data<int>();
const int *seq_lens_encoder_data = seq_lens_encoder_cpu.data<int>();
int elem_nums = out.numel();
if (output_padding_offset_cpu) {
const int *output_padding_offset_data =
output_padding_offset_cpu->data<int>();
switch (tmp_out_cpu.dtype()) {
case paddle::DataType::FLOAT32:
RebuildAppendPaddingCPUImpl<float>(out.data<float>(),
tmp_out_cpu.data<float>(),
cum_offsets_data,
seq_len_this_time_data,
seq_lens_decoder_data,
seq_lens_encoder_data,
output_padding_offset_data,
max_input_length,
dim_embed,
elem_nums);
break;
case paddle::DataType::FLOAT16:
RebuildAppendPaddingCPUImpl<paddle::float16>(
out.data<paddle::float16>(),
tmp_out_cpu.data<paddle::float16>(),
cum_offsets_data,
seq_len_this_time_data,
seq_lens_decoder_data,
seq_lens_encoder_data,
output_padding_offset_data,
max_input_length,
dim_embed,
elem_nums);
break;
case paddle::DataType::BFLOAT16:
RebuildAppendPaddingCPUImpl<paddle::bfloat16>(
out.data<paddle::bfloat16>(),
tmp_out_cpu.data<paddle::bfloat16>(),
cum_offsets_data,
seq_len_this_time_data,
seq_lens_decoder_data,
seq_lens_encoder_data,
output_padding_offset_data,
max_input_length,
dim_embed,
elem_nums);
break;
default:
PD_THROW(
"Unsupported data type for rebuild_padding_cpu. "
"Only float32, float16, and bfloat16 are supported.");
}
} else {
switch (tmp_out_cpu.dtype()) {
case paddle::DataType::FLOAT32:
RebuildPaddingCPUImpl<float>(out.data<float>(),
tmp_out_cpu.data<float>(),
cum_offsets_data,
seq_len_this_time_data,
seq_lens_decoder_data,
seq_lens_encoder_data,
max_input_length,
dim_embed,
elem_nums);
break;
case paddle::DataType::FLOAT16:
RebuildPaddingCPUImpl<paddle::float16>(
out.data<paddle::float16>(),
tmp_out_cpu.data<paddle::float16>(),
cum_offsets_data,
seq_len_this_time_data,
seq_lens_decoder_data,
seq_lens_encoder_data,
max_input_length,
dim_embed,
elem_nums);
break;
case paddle::DataType::BFLOAT16:
RebuildPaddingCPUImpl<paddle::bfloat16>(
out.data<paddle::bfloat16>(),
tmp_out_cpu.data<paddle::bfloat16>(),
cum_offsets_data,
seq_len_this_time_data,
seq_lens_decoder_data,
seq_lens_encoder_data,
max_input_length,
dim_embed,
elem_nums);
break;
default:
PD_THROW(
"Unsupported data type for rebuild_padding_cpu. "
"Only float32, float16, and bfloat16 are supported.");
}
}
}
return {out};
return {out};
}
std::vector<std::vector<int64_t>> RebuildPaddingInferShape(
const std::vector<int64_t> &tmp_out_shape,
const std::vector<int64_t> &cu_seqlens_q_shape,
const std::vector<int64_t> &cum_offsets_shape,
const std::vector<int64_t> &seq_len_this_time_shape,
const std::vector<int64_t> &seq_lens_decoder_shape,
const std::vector<int64_t> &seq_lens_encoder_shape,
const paddle::optional<std::vector<int64_t>> &output_padding_offset_shape) {
int64_t dim_embed = tmp_out_shape[1];
if (output_padding_offset_shape) {
return {{-1, dim_embed}};
} else {
int64_t bsz = cu_seqlens_q_shape[0] - 1;
return {{bsz, dim_embed}};
}
int64_t dim_embed = tmp_out_shape[1];
if (output_padding_offset_shape) {
return {{-1, dim_embed}};
} else {
int64_t bsz = cum_offsets_shape[0];
return {{bsz, dim_embed}};
}
}
std::vector<paddle::DataType> RebuildPaddingInferDtype(
const paddle::DataType &tmp_out_dtype,
const paddle::DataType &cu_seqlens_q_dtype,
const paddle::DataType &cum_offsets_dtype,
const paddle::DataType &seq_len_this_time_dtype,
const paddle::DataType &seq_lens_decoder_dtype,
const paddle::DataType &seq_lens_encoder_dtype,
const paddle::optional<paddle::DataType> &output_padding_offset_dtype) {
return {tmp_out_dtype};
return {tmp_out_dtype};
}
PD_BUILD_STATIC_OP(rebuild_padding_cpu)
.Inputs({"tmp_out",
"cu_seqlens_q",
"cum_offsets",
"seq_len_this_time",
"seq_lens_decoder",
"seq_lens_encoder",

View File

@@ -14,28 +14,28 @@
#include "paddle/extension.h"
void set_value_by_flags_and_idx(const bool *stop_flags,
int64_t *pre_ids_all,
const int64_t *input_ids,
const int *seq_lens_encoder,
const int *seq_lens_decoder,
const int64_t *step_idx,
int bs,
int length,
int length_input_ids) {
for (int bi = 0; bi < bs; bi++) {
if (!stop_flags[bi]) {
const int seq_len_dec = seq_lens_decoder[bi];
const int seq_len_enc = seq_lens_encoder[bi];
int64_t *pre_ids_all_now = pre_ids_all + bi * length;
const int64_t *input_ids_now = input_ids + bi * length_input_ids;
if (seq_len_dec == 0) {
pre_ids_all_now[step_idx[bi]] = input_ids_now[seq_len_enc - 1];
} else {
pre_ids_all_now[step_idx[bi]] = input_ids_now[0];
}
void set_value_by_flag_and_id(const bool *stop_flags,
int64_t *pre_ids_all,
const int64_t *input_ids,
const int *seq_lens_encoder,
const int *seq_lens_decoder,
const int64_t *step_idx,
int bs,
int length,
int length_input_ids) {
for (int bi = 0; bi < bs; bi++) {
if (!stop_flags[bi]) {
const int seq_len_dec = seq_lens_decoder[bi];
const int seq_len_enc = seq_lens_encoder[bi];
int64_t *pre_ids_all_now = pre_ids_all + bi * length;
const int64_t *input_ids_now = input_ids + bi * length_input_ids;
if (seq_len_dec == 0) {
pre_ids_all_now[step_idx[bi]] = input_ids_now[seq_len_enc - 1];
} else {
pre_ids_all_now[step_idx[bi]] = input_ids_now[0];
}
}
}
}
}
void SetValueByFlagsAndIdx(const paddle::Tensor &pre_ids_all,
@@ -45,12 +45,12 @@ void SetValueByFlagsAndIdx(const paddle::Tensor &pre_ids_all,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &step_idx,
const paddle::Tensor &stop_flags) {
std::vector<int64_t> pre_ids_all_shape = pre_ids_all.shape();
int bs = seq_lens_this_time.shape()[0];
int length = pre_ids_all_shape[1];
int length_input_ids = input_ids.shape()[1];
std::vector<int64_t> pre_ids_all_shape = pre_ids_all.shape();
int bs = seq_lens_this_time.shape()[0];
int length = pre_ids_all_shape[1];
int length_input_ids = input_ids.shape()[1];
set_value_by_flags_and_idx(stop_flags.data<bool>(),
set_value_by_flag_and_id(stop_flags.data<bool>(),
const_cast<int64_t *>(pre_ids_all.data<int64_t>()),
input_ids.data<int64_t>(),
seq_lens_encoder.data<int>(),

View File

@@ -21,45 +21,45 @@ void probs_sort(const float *probs,
float *ProbsVals,
int vocab_size,
int bsz) {
float cursum = 0;
std::vector<int64_t> elementsIds(vocab_size);
std::vector<float> elementsProbs(vocab_size);
float cursum = 0;
std::vector<int64_t> elementsIds(vocab_size);
std::vector<float> elementsProbs(vocab_size);
#pragma omp parallel for
for (int j = 0; j < vocab_size; j++) {
elementsIds[j] = j;
elementsProbs[j] = probs[j];
}
x86simdsortStatic::keyvalue_qsort(
elementsProbs.data(), elementsIds.data(), vocab_size, false, true);
for (int j = 0; j < vocab_size; j++) {
elementsIds[j] = j;
elementsProbs[j] = probs[j];
}
x86simdsortStatic::keyvalue_qsort(
elementsProbs.data(), elementsIds.data(), vocab_size, false, true);
#pragma omp parallel for
for (int j = 0; j < vocab_size; ++j) {
ProbsVals[j] = elementsProbs[j];
ProbsIds[j] = elementsIds[j];
}
for (int j = 0; j < vocab_size; ++j) {
ProbsVals[j] = elementsProbs[j];
ProbsIds[j] = elementsIds[j];
}
}
std::vector<paddle::Tensor> SimdSort(const paddle::Tensor &probs) {
const int bsz = probs.shape()[0];
const int vocab_size = probs.shape()[1];
auto sorted_indices =
paddle::empty({bsz, vocab_size}, paddle::DataType::INT64, probs.place());
auto sorted_probs = paddle::empty(
{bsz, vocab_size}, paddle::DataType::FLOAT32, probs.place());
probs_sort(probs.data<float>(),
const_cast<int64_t *>(sorted_indices.data<int64_t>()),
const_cast<float *>(sorted_probs.data<float>()),
vocab_size,
bsz);
return {sorted_indices, sorted_probs};
const int bsz = probs.shape()[0];
const int vocab_size = probs.shape()[1];
auto sorted_indices = paddle::empty(
{bsz, vocab_size}, paddle::DataType::INT64, probs.place());
auto sorted_probs = paddle::empty(
{bsz, vocab_size}, paddle::DataType::FLOAT32, probs.place());
probs_sort(probs.data<float>(),
const_cast<int64_t *>(sorted_indices.data<int64_t>()),
const_cast<float *>(sorted_probs.data<float>()),
vocab_size,
bsz);
return {sorted_indices, sorted_probs};
}
std::vector<std::vector<int64_t>> SimdSortInferShape(
const std::vector<int64_t> &probs_shape) {
int64_t bsz = probs_shape[0];
int64_t vocab_size = probs_shape[1];
return {{bsz, vocab_size}, {bsz, vocab_size}};
int64_t bsz = probs_shape[0];
int64_t vocab_size = probs_shape[1];
return {{bsz, vocab_size}, {bsz, vocab_size}};
}
std::vector<paddle::DataType> SimdSortInferDtype(
const paddle::DataType &probs_dtype) {
return {paddle::DataType::INT64, paddle::DataType::FLOAT32};
return {paddle::DataType::INT64, paddle::DataType::FLOAT32};
}
PD_BUILD_STATIC_OP(simd_sort)
.Inputs({"probs"})

View File

@@ -16,23 +16,23 @@
#include "paddle/extension.h"
std::vector<paddle::Tensor> SimdSort(const paddle::Tensor &probs) {
const int bsz = probs.shape()[0];
const int vocab_size = probs.shape()[1];
auto sorted_indices =
paddle::empty({bsz, vocab_size}, paddle::DataType::INT64, probs.place());
auto sorted_probs = paddle::empty(
{bsz, vocab_size}, paddle::DataType::FLOAT32, probs.place());
return {sorted_indices, sorted_probs};
const int bsz = probs.shape()[0];
const int vocab_size = probs.shape()[1];
auto sorted_indices = paddle::empty(
{bsz, vocab_size}, paddle::DataType::INT64, probs.place());
auto sorted_probs = paddle::empty(
{bsz, vocab_size}, paddle::DataType::FLOAT32, probs.place());
return {sorted_indices, sorted_probs};
}
std::vector<std::vector<int64_t>> SimdSortInferShape(
const std::vector<int64_t> &probs_shape) {
int64_t bsz = probs_shape[0];
int64_t vocab_size = probs_shape[1];
return {{bsz, vocab_size}, {bsz, vocab_size}};
int64_t bsz = probs_shape[0];
int64_t vocab_size = probs_shape[1];
return {{bsz, vocab_size}, {bsz, vocab_size}};
}
std::vector<paddle::DataType> SimdSortInferDtype(
const paddle::DataType &probs_dtype) {
return {paddle::DataType::INT64, paddle::DataType::FLOAT32};
return {paddle::DataType::INT64, paddle::DataType::FLOAT32};
}
PD_BUILD_STATIC_OP(simd_sort)
.Inputs({"probs"})

View File

@@ -18,18 +18,14 @@
#include <stdio.h>
#include "paddle/extension.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
bool is_in_end(const int64_t id, const int64_t *end_ids, int length) {
bool flag = false;
for (int i = 0; i < length; i++) {
if (id == end_ids[i]) {
return true;
bool flag = false;
for (int i = 0; i < length; i++) {
if (id == end_ids[i]) {
return true;
}
}
}
return flag;
return flag;
}
void set_value_by_flags(bool *stop_flags,
@@ -40,23 +36,21 @@ void set_value_by_flags(bool *stop_flags,
const int bs,
const int end_length,
bool beam_search) {
for (int bi = 0; bi < bs; bi++) {
if (stop_flags[bi]) {
if ((seq_lens[bi] == 0)) {
topk_ids[bi] = -1;
} else {
topk_ids[bi] = end_ids[0];
next_tokens[bi] = end_ids[0];
}
} else {
next_tokens[bi] = topk_ids[bi];
for (int bi = 0; bi < bs; bi++) {
if (stop_flags[bi]) {
if ((seq_lens[bi] == 0)) {
topk_ids[bi] = -1;
} else {
topk_ids[bi] = end_ids[0];
next_tokens[bi] = end_ids[0];
}
} else {
next_tokens[bi] = topk_ids[bi];
}
if (!beam_search && is_in_end(topk_ids[bi], end_ids, end_length)) {
stop_flags[bi] = true;
}
}
if (!beam_search && is_in_end(topk_ids[bi], end_ids, end_length)) {
stop_flags[bi] = true;
topk_ids[bi] = end_ids[0];
next_tokens[bi] = end_ids[0];
}
}
}
void GetStopFlagsMulti(const paddle::Tensor &topk_ids,
@@ -65,17 +59,17 @@ void GetStopFlagsMulti(const paddle::Tensor &topk_ids,
const paddle::Tensor &end_ids,
const paddle::Tensor &next_tokens,
const bool beam_search) {
std::vector<int64_t> shape = topk_ids.shape();
int64_t bs_now = shape[0];
int64_t end_length = end_ids.shape()[0];
set_value_by_flags(const_cast<bool *>(stop_flags.data<bool>()),
const_cast<int64_t *>(topk_ids.data<int64_t>()),
const_cast<int64_t *>(next_tokens.data<int64_t>()),
end_ids.data<int64_t>(),
seq_lens.data<int>(),
bs_now,
end_length,
false);
std::vector<int64_t> shape = topk_ids.shape();
int64_t bs_now = shape[0];
int64_t end_length = end_ids.shape()[0];
set_value_by_flags(const_cast<bool *>(stop_flags.data<bool>()),
const_cast<int64_t *>(topk_ids.data<int64_t>()),
const_cast<int64_t *>(next_tokens.data<int64_t>()),
end_ids.data<int64_t>(),
seq_lens.data<int>(),
bs_now,
end_length,
false);
}
PD_BUILD_STATIC_OP(set_stop_value_multi_ends_cpu)

View File

@@ -23,16 +23,16 @@ void min_length_logits_process(float *logits,
const int64_t bs,
const int64_t length,
const int64_t end_length) {
for (int bi = 0; bi < bs; ++bi) {
if (cur_len[bi] < 0) {
continue;
for (int bi = 0; bi < bs; ++bi) {
if (cur_len[bi] < 0) {
continue;
}
if (cur_len[bi] < min_len[bi]) {
for (int i = 0; i < end_length; ++i) {
logits[bi * length + eos_token_id[i]] = -1e10;
}
}
}
if (cur_len[bi] < min_len[bi]) {
for (int i = 0; i < end_length; ++i) {
logits[bi * length + eos_token_id[i]] = -1e10;
}
}
}
}
void update_repeat_times(const int64_t *pre_ids,
@@ -41,20 +41,20 @@ void update_repeat_times(const int64_t *pre_ids,
const int64_t bs,
const int64_t length,
const int64_t length_id) {
for (int bi = 0; bi < bs; ++bi) {
if (cur_len[bi] < 0) {
continue;
for (int bi = 0; bi < bs; ++bi) {
if (cur_len[bi] < 0) {
continue;
}
const int64_t *pre_ids_now = pre_ids + bi * length_id;
int *repeat_times_now = repeat_times + bi * length;
for (int i = 0; i < length_id; i++) {
int64_t id = pre_ids_now[i];
if (id < 0) {
break;
}
repeat_times_now[id] += 1;
}
}
const int64_t *pre_ids_now = pre_ids + bi * length_id;
int *repeat_times_now = repeat_times + bi * length;
for (int i = 0; i < length_id; i++) {
int64_t id = pre_ids_now[i];
if (id < 0) {
break;
}
repeat_times_now[id] += 1;
}
}
}
void update_value_by_repeat_times(const int *repeat_times,
@@ -65,22 +65,24 @@ void update_value_by_repeat_times(const int *repeat_times,
float *logits,
const int64_t bs,
const int64_t length) {
for (int bi = 0; bi < bs; ++bi) {
float *logits_now = logits + bi * length;
const int *repeat_times_now = repeat_times + bi * length;
float alpha = static_cast<float>(penalty_scores[bi]);
float beta = static_cast<float>(frequency_score[bi]);
float gamma = static_cast<float>(presence_score[bi]);
for (int i = 0; i < length; ++i) {
int times = repeat_times_now[i];
float logit_now = static_cast<float>(logits_now[i]);
if (times == 0) {
logits_now[i] = static_cast<float>(logit_now / temperatures[bi]);
}
logit_now = logit_now < 0 ? logit_now * alpha : logit_now / alpha;
logits_now[i] = static_cast<float>(logit_now - times * beta - gamma);
for (int bi = 0; bi < bs; ++bi) {
float *logits_now = logits + bi * length;
const int *repeat_times_now = repeat_times + bi * length;
float alpha = static_cast<float>(penalty_scores[bi]);
float beta = static_cast<float>(frequency_score[bi]);
float gamma = static_cast<float>(presence_score[bi]);
for (int i = 0; i < length; ++i) {
int times = repeat_times_now[i];
float logit_now = static_cast<float>(logits_now[i]);
if (times == 0) {
logits_now[i] =
static_cast<float>(logit_now / temperatures[bi]);
}
logit_now = logit_now < 0 ? logit_now * alpha : logit_now / alpha;
logits_now[i] =
static_cast<float>(logit_now - times * beta - gamma);
}
}
}
}
void ban_bad_words(float *logits,
@@ -88,14 +90,15 @@ void ban_bad_words(float *logits,
const int64_t bs,
const int64_t length,
const int64_t bad_words_length) {
for (int bi = 0; bi < bs; ++bi) {
float *logits_now = logits + bi * length;
for (int bwid = 0; bwid < bad_words_length; ++bwid) {
const int64_t bad_words_token_id = bad_words_list[bwid];
if (bad_words_token_id >= length || bad_words_token_id < 0) continue;
logits_now[bad_words_token_id] = -1e10;
for (int bi = 0; bi < bs; ++bi) {
float *logits_now = logits + bi * length;
for (int bwid = 0; bwid < bad_words_length; ++bwid) {
const int64_t bad_words_token_id = bad_words_list[bwid];
if (bad_words_token_id >= length || bad_words_token_id < 0)
continue;
logits_now[bad_words_token_id] = -1e10;
}
}
}
}
template <paddle::DataType D>
@@ -109,44 +112,44 @@ void token_penalty_multi_scores_kernel(const paddle::Tensor &pre_ids,
const paddle::Tensor &cur_len,
const paddle::Tensor &min_len,
const paddle::Tensor &eos_token_id) {
std::vector<int64_t> shape = logits.shape();
auto repeat_times =
paddle::full(shape, 0, paddle::DataType::INT32, pre_ids.place());
int64_t bs = shape[0];
int64_t length = shape[1];
int64_t length_id = pre_ids.shape()[1];
int64_t end_length = eos_token_id.shape()[0];
int64_t length_bad_words = bad_tokens.shape()[0];
std::vector<int64_t> shape = logits.shape();
auto repeat_times =
paddle::full(shape, 0, paddle::DataType::INT32, pre_ids.place());
int64_t bs = shape[0];
int64_t length = shape[1];
int64_t length_id = pre_ids.shape()[1];
int64_t end_length = eos_token_id.shape()[0];
int64_t length_bad_words = bad_tokens.shape()[0];
min_length_logits_process(const_cast<float *>(logits.data<float>()),
cur_len.data<int64_t>(),
min_len.data<int64_t>(),
eos_token_id.data<int64_t>(),
bs,
length,
end_length);
min_length_logits_process(const_cast<float *>(logits.data<float>()),
cur_len.data<int64_t>(),
min_len.data<int64_t>(),
eos_token_id.data<int64_t>(),
bs,
length,
end_length);
update_repeat_times(pre_ids.data<int64_t>(),
cur_len.data<int64_t>(),
repeat_times.data<int>(),
bs,
length,
length_id);
update_repeat_times(pre_ids.data<int64_t>(),
cur_len.data<int64_t>(),
repeat_times.data<int>(),
bs,
length,
length_id);
update_value_by_repeat_times(repeat_times.data<int>(),
penalty_scores.data<float>(),
frequency_score.data<float>(),
presence_score.data<float>(),
temperatures.data<float>(),
const_cast<float *>(logits.data<float>()),
bs,
length);
update_value_by_repeat_times(repeat_times.data<int>(),
penalty_scores.data<float>(),
frequency_score.data<float>(),
presence_score.data<float>(),
temperatures.data<float>(),
const_cast<float *>(logits.data<float>()),
bs,
length);
ban_bad_words(const_cast<float *>(logits.data<float>()),
bad_tokens.data<int64_t>(),
bs,
length,
length_bad_words);
ban_bad_words(const_cast<float *>(logits.data<float>()),
bad_tokens.data<int64_t>(),
bs,
length,
length_bad_words);
}
void TokenPenaltyMultiScores(const paddle::Tensor &pre_ids,
@@ -159,17 +162,17 @@ void TokenPenaltyMultiScores(const paddle::Tensor &pre_ids,
const paddle::Tensor &cur_len,
const paddle::Tensor &min_len,
const paddle::Tensor &eos_token_id) {
return token_penalty_multi_scores_kernel<paddle::DataType::FLOAT32>(
pre_ids,
logits,
penalty_scores,
frequency_scores,
presence_scores,
temperatures,
bad_tokens,
cur_len,
min_len,
eos_token_id);
return token_penalty_multi_scores_kernel<paddle::DataType::FLOAT32>(
pre_ids,
logits,
penalty_scores,
frequency_scores,
presence_scores,
temperatures,
bad_tokens,
cur_len,
min_len,
eos_token_id);
}
PD_BUILD_STATIC_OP(get_token_penalty_multi_scores_cpu)

View File

@@ -24,50 +24,50 @@ void update_inputs_kernel(bool *not_need_stop,
const int64_t *next_tokens,
const int bsz,
const int input_ids_stride) {
int64_t stop_sum = 0;
for (int bi = 0; bi < bsz; ++bi) {
bool stop_flag_now = false;
int64_t stop_flag_now_int = 0;
stop_flag_now = stop_flags[bi];
stop_flag_now_int = static_cast<int64_t>(stop_flag_now);
auto seq_len_this_time = seq_lens_this_time[bi];
auto seq_len_encoder = seq_lens_encoder[bi];
auto seq_len_decoder = seq_lens_decoder[bi];
seq_lens_decoder[bi] =
stop_flag_now
? 0
: (seq_len_decoder == 0 ? seq_len_encoder : seq_len_decoder + 1);
seq_lens_this_time[bi] = stop_flag_now ? 0 : 1;
seq_lens_encoder[bi] = 0;
int64_t *input_ids_now = input_ids + bi * input_ids_stride;
input_ids_now[0] = next_tokens[bi];
stop_sum += stop_flag_now_int;
}
not_need_stop[0] = stop_sum < stop_nums[0];
int64_t stop_sum = 0;
for (int bi = 0; bi < bsz; ++bi) {
bool stop_flag_now = false;
int64_t stop_flag_now_int = 0;
stop_flag_now = stop_flags[bi];
stop_flag_now_int = static_cast<int64_t>(stop_flag_now);
auto seq_len_this_time = seq_lens_this_time[bi];
auto seq_len_encoder = seq_lens_encoder[bi];
auto seq_len_decoder = seq_lens_decoder[bi];
seq_lens_decoder[bi] =
stop_flag_now ? 0
: (seq_len_decoder == 0 ? seq_len_encoder
: seq_len_decoder + 1);
seq_lens_this_time[bi] = stop_flag_now ? 0 : 1;
seq_lens_encoder[bi] = 0;
int64_t *input_ids_now = input_ids + bi * input_ids_stride;
input_ids_now[0] = next_tokens[bi];
stop_sum += stop_flag_now_int;
}
not_need_stop[0] = stop_sum < stop_nums[0];
}
void UpdateInputs(const paddle::Tensor &stop_flags,
const paddle::Tensor &not_need_stop,
const paddle::Tensor &seq_lens_this_time,
const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &input_ids,
const paddle::Tensor &stop_nums,
const paddle::Tensor &next_tokens,
const paddle::Tensor &is_block_step) {
const int bsz = input_ids.shape()[0];
const int input_ids_stride = input_ids.shape()[1];
update_inputs_kernel(const_cast<bool *>(not_need_stop.data<bool>()),
const_cast<int *>(seq_lens_this_time.data<int>()),
const_cast<int *>(seq_lens_encoder.data<int>()),
const_cast<int *>(seq_lens_decoder.data<int>()),
const_cast<int64_t *>(input_ids.data<int64_t>()),
stop_nums.data<int64_t>(),
stop_flags.data<bool>(),
is_block_step.data<bool>(),
next_tokens.data<int64_t>(),
bsz,
input_ids_stride);
void UpdateInputes(const paddle::Tensor &stop_flags,
const paddle::Tensor &not_need_stop,
const paddle::Tensor &seq_lens_this_time,
const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &input_ids,
const paddle::Tensor &stop_nums,
const paddle::Tensor &next_tokens,
const paddle::Tensor &is_block_step) {
const int bsz = input_ids.shape()[0];
const int input_ids_stride = input_ids.shape()[1];
update_inputs_kernel(const_cast<bool *>(not_need_stop.data<bool>()),
const_cast<int *>(seq_lens_this_time.data<int>()),
const_cast<int *>(seq_lens_encoder.data<int>()),
const_cast<int *>(seq_lens_decoder.data<int>()),
const_cast<int64_t *>(input_ids.data<int64_t>()),
stop_nums.data<int64_t>(),
stop_flags.data<bool>(),
is_block_step.data<bool>(),
next_tokens.data<int64_t>(),
bsz,
input_ids_stride);
}
PD_BUILD_STATIC_OP(update_inputs_cpu)
@@ -90,4 +90,4 @@ PD_BUILD_STATIC_OP(update_inputs_cpu)
{"seq_lens_encoder", "seq_lens_encoder_out"},
{"seq_lens_decoder", "seq_lens_decoder_out"},
{"input_ids", "input_ids_out"}})
.SetKernelFn(PD_KERNEL(UpdateInputs));
.SetKernelFn(PD_KERNEL(UpdateInputes));

View File

@@ -45,18 +45,18 @@ std::vector<paddle::Tensor> InvokeAllLLaMALayer(
int maxPositions,
int maxPosEmbed,
int intermediateSize) {
auto out = paddle::empty_like(input);
return {out};
auto out = paddle::empty_like(input);
return {out};
}
std::vector<std::vector<int64_t>> AllLLaMALayerInferShape(
std::vector<int64_t> x_shape) {
return {x_shape};
return {x_shape};
}
std::vector<paddle::DataType> AllLLaMALayerInferDtype(
paddle::DataType x_dtype) {
return {x_dtype};
return {x_dtype};
}
PD_BUILD_STATIC_OP(xft_llama_all_layer)

View File

@@ -16,20 +16,20 @@
#include "paddle/extension.h"
std::vector<paddle::Tensor> XftGreedySearch(const paddle::Tensor &probs) {
const int bsz = probs.shape()[0];
const int vocab_size = probs.shape()[1];
auto next_tokens =
paddle::empty({bsz, 1}, paddle::DataType::INT64, probs.place());
return {next_tokens};
const int bsz = probs.shape()[0];
const int vocab_size = probs.shape()[1];
auto next_tokens =
paddle::empty({bsz, 1}, paddle::DataType::INT64, probs.place());
return {next_tokens};
}
std::vector<std::vector<int64_t>> XftGreedySearchInferShape(
const std::vector<int64_t> &probs_shape) {
int64_t bsz = probs_shape[0];
return {{bsz, 1}};
int64_t bsz = probs_shape[0];
return {{bsz, 1}};
}
std::vector<paddle::DataType> XftGreedySearchInferDtype(
const paddle::DataType &probs_dtype) {
return {paddle::DataType::INT64};
return {paddle::DataType::INT64};
}
PD_BUILD_STATIC_OP(xft_greedy_search)
.Inputs({"probs"})

View File

@@ -38,7 +38,7 @@ class type2value<phi::dtype::float16> {
template <paddle::DataType D>
void AppendAttentionKernel(
std::vector<paddle::Tensor> AppendAttentionKernel(
const AppendAttnMetaData& meta_data,
const paddle::Tensor& qkv,
const paddle::Tensor& key_cache,
@@ -59,7 +59,7 @@ void AppendAttentionKernel(
const paddle::Tensor& decoder_tile_ids_per_batch,
const paddle::Tensor& decoder_num_blocks,
const paddle::Tensor& set_max_lengths,
paddle::Tensor& fmha_out,
const paddle::Tensor& max_len_kv,
const paddle::optional<paddle::Tensor>& rotary_embs,
const paddle::optional<paddle::Tensor>& attn_mask,
const paddle::optional<paddle::Tensor>& qkv_bias,
@@ -73,10 +73,6 @@ void AppendAttentionKernel(
const paddle::optional<paddle::Tensor>& out_linear_shifts,
const paddle::optional<paddle::Tensor>& out_linear_smooths,
const paddle::optional<paddle::Tensor>& kv_signal_data,
const paddle::optional<paddle::Tensor>& q_norm_weight,
const paddle::optional<paddle::Tensor>& k_norm_weight,
const paddle::optional<paddle::Tensor>& sinks,
const float rms_norm_eps,
const std::string& cache_quant_type_str,
const bool use_neox_rotary_style,
const bool rope_3d,
@@ -90,8 +86,7 @@ void AppendAttentionKernel(
const int encoder_max_partition_size,
const int speculate_max_draft_token_num,
const bool causal,
const bool speculate_decoder,
const int sliding_window) {
const bool speculate_decoder) {
typedef PDTraits<D> traits_;
typedef typename traits_::DataType DataType_;
typedef typename traits_::data_t data_t;
@@ -103,7 +98,6 @@ void AppendAttentionKernel(
int max_dec_len_this_time = set_max_lengths.data<int>()[2];
int max_enc_dec_len_this_time = set_max_lengths.data<int>()[3];
int max_just_dec_len_this_time = set_max_lengths.data<int>()[4];
int max_kv_len_this_time = set_max_lengths.data<int>()[8];
auto main_stream = qkv.stream();
static cudaEvent_t main_event;
@@ -124,6 +118,27 @@ void AppendAttentionKernel(
} else {
qkv_out = qkv;
}
paddle::Tensor fmha_out;
if (out_linear_in_scale > 0.0) {
if (fabs(quant_max_bound - 127.0f) < 0.000001) {
fmha_out = GetEmptyTensor(
{meta_data.token_nums, meta_data.q_num_heads * meta_data.head_dims},
paddle::DataType::INT8,
qkv.place());
} else if (fabs(quant_max_bound - 448.0f) < 0.000001) {
fmha_out = GetEmptyTensor(
{meta_data.token_nums, meta_data.q_num_heads * meta_data.head_dims},
paddle::DataType::FLOAT8_E4M3FN,
qkv.place());
}else{
PD_THROW("Only supported attr of quant_max_bound in ['127', '448'].");
}
} else {
fmha_out = GetEmptyTensor(
{meta_data.token_nums, meta_data.q_num_heads * meta_data.head_dims},
D,
qkv.place());
}
auto dispatch_CascadeAppendAttentionKernel = [&](auto temp_args,
const paddle::Tensor& lambda_batch_ids,
@@ -141,13 +156,12 @@ void AppendAttentionKernel(
key_cache,
value_cache,
attn_mask,
cache_quant_type_str == "block_wise_fp8" ? cache_k_quant_scales : cache_k_dequant_scales,
cache_quant_type_str == "block_wise_fp8" ? cache_v_quant_scales : cache_v_dequant_scales,
cache_k_dequant_scales,
cache_v_dequant_scales,
cache_k_zp,
cache_v_zp,
out_linear_shifts,
out_linear_smooths,
sinks,
seq_lens_this_time,
seq_lens_decoder,
seq_lens_encoder,
@@ -171,8 +185,7 @@ void AppendAttentionKernel(
lambda_is_decoder,
lambda_enable_prefill,
lambda_stream,
&fmha_out,
sliding_window);
&fmha_out);
};
if (max_enc_len_this_time > 0) {
@@ -210,10 +223,7 @@ void AppendAttentionKernel(
main_stream,
&qkv_out,
const_cast<paddle::Tensor*>(&key_cache),
const_cast<paddle::Tensor*>(&value_cache),
q_norm_weight,
k_norm_weight,
rms_norm_eps);
const_cast<paddle::Tensor*>(&value_cache));
};
if (qkv_out_scales) {
@@ -248,6 +258,7 @@ void AppendAttentionKernel(
if (max_just_dec_len_this_time > 0) {
int decoder_num_blocks_data = decoder_num_blocks.data<int>()[0];
int max_len_kv_data = max_len_kv.data<int>()[0];
cudaStream_t exec_stream;
if (max_enc_len_this_time > 0) {
@@ -259,6 +270,54 @@ void AppendAttentionKernel(
if (speculate_decoder) {
if (qkv_out_scales) {
SpeculateWriteCacheWithRoPEKernel<data_t, int>(
meta_data,
qkv, // [token_num, num_heads, head_dim]
seq_lens_decoder,
seq_lens_encoder,
batch_id_per_token,
cu_seqlens_q,
block_tables,
rotary_embs,
qkv_out_scales,
qkv_bias,
cache_k_quant_scales,
cache_v_quant_scales,
cache_k_zp,
cache_v_zp,
cache_quant_type_str,
use_neox_rotary_style,
max_input_length,
exec_stream,
&qkv_out,
const_cast<paddle::Tensor*>(&key_cache),
const_cast<paddle::Tensor*>(&value_cache));
} else {
SpeculateWriteCacheWithRoPEKernel<data_t, data_t>(
meta_data,
qkv_out, // [token_num, num_heads, head_dim]
seq_lens_decoder,
seq_lens_encoder,
batch_id_per_token,
cu_seqlens_q,
block_tables,
rotary_embs,
qkv_out_scales,
qkv_bias,
cache_k_quant_scales,
cache_v_quant_scales,
cache_k_zp,
cache_v_zp,
cache_quant_type_str,
use_neox_rotary_style,
max_input_length,
exec_stream,
&qkv_out,
const_cast<paddle::Tensor*>(&key_cache),
const_cast<paddle::Tensor*>(&value_cache));
}
} else {
if (qkv_out_scales) {
DecoderWriteCacheWithRoPEKernel<data_t, int>(
meta_data,
qkv, // [token_num, num_heads, head_dim]
seq_lens_decoder,
@@ -280,12 +339,9 @@ void AppendAttentionKernel(
exec_stream,
&qkv_out,
const_cast<paddle::Tensor*>(&key_cache),
const_cast<paddle::Tensor*>(&value_cache),
q_norm_weight,
k_norm_weight,
rms_norm_eps);
const_cast<paddle::Tensor*>(&value_cache));
} else {
SpeculateWriteCacheWithRoPEKernel<data_t, data_t>(
DecoderWriteCacheWithRoPEKernel<data_t, data_t>(
meta_data,
qkv_out, // [token_num, num_heads, head_dim]
seq_lens_decoder,
@@ -307,64 +363,7 @@ void AppendAttentionKernel(
exec_stream,
&qkv_out,
const_cast<paddle::Tensor*>(&key_cache),
const_cast<paddle::Tensor*>(&value_cache),
q_norm_weight,
k_norm_weight,
rms_norm_eps);
}
} else {
if (qkv_out_scales) {
DecoderWriteCacheWithRoPEKernel<data_t, int>(
meta_data,
qkv, // [token_num, num_heads, head_dim]
seq_lens_decoder,
seq_lens_encoder,
cu_seqlens_q,
block_tables,
rotary_embs,
qkv_out_scales,
qkv_bias,
cache_k_quant_scales,
cache_v_quant_scales,
cache_k_zp,
cache_v_zp,
cache_quant_type_str,
use_neox_rotary_style,
rope_3d,
max_input_length,
exec_stream,
&qkv_out,
const_cast<paddle::Tensor*>(&key_cache),
const_cast<paddle::Tensor*>(&value_cache),
q_norm_weight,
k_norm_weight,
rms_norm_eps);
} else {
DecoderWriteCacheWithRoPEKernel<data_t, data_t>(
meta_data,
qkv_out, // [token_num, num_heads, head_dim]
seq_lens_decoder,
seq_lens_encoder,
cu_seqlens_q,
block_tables,
rotary_embs,
qkv_out_scales,
qkv_bias,
cache_k_quant_scales,
cache_v_quant_scales,
cache_k_zp,
cache_v_zp,
cache_quant_type_str,
use_neox_rotary_style,
rope_3d,
max_input_length,
exec_stream,
&qkv_out,
const_cast<paddle::Tensor*>(&key_cache),
const_cast<paddle::Tensor*>(&value_cache),
q_norm_weight,
k_norm_weight,
rms_norm_eps);
const_cast<paddle::Tensor*>(&value_cache));
}
}
@@ -373,26 +372,28 @@ void AppendAttentionKernel(
case paddle::DataType::INT8:{
int8_t tmp;
dispatch_CascadeAppendAttentionKernel(tmp, decoder_batch_ids, decoder_tile_ids_per_batch, decoder_num_blocks_data,
decoder_block_shape_q, max_kv_len_this_time, !speculate_decoder, !speculate_decoder, exec_stream);
decoder_block_shape_q, max_len_kv_data, !speculate_decoder, !speculate_decoder, exec_stream);
break;
}
case paddle::DataType::FLOAT8_E4M3FN:{
phi::dtype::float8_e4m3fn tmp;
dispatch_CascadeAppendAttentionKernel(tmp, decoder_batch_ids, decoder_tile_ids_per_batch, decoder_num_blocks_data,
decoder_block_shape_q, max_kv_len_this_time, !speculate_decoder, !speculate_decoder, exec_stream);
decoder_block_shape_q, max_len_kv_data, !speculate_decoder, !speculate_decoder, exec_stream);
break;
}
}
} else {
data_t tmp;
dispatch_CascadeAppendAttentionKernel(tmp, decoder_batch_ids, decoder_tile_ids_per_batch, decoder_num_blocks_data,
decoder_block_shape_q, max_kv_len_this_time, !speculate_decoder, !speculate_decoder, exec_stream);
decoder_block_shape_q, max_len_kv_data, !speculate_decoder, !speculate_decoder, exec_stream);
}
if (max_enc_len_this_time > 0) {
cudaEventRecord(decoder_event, exec_stream);
cudaStreamWaitEvent(main_stream, decoder_event);
}
}
return {fmha_out, qkv_out};
}
std::vector<paddle::Tensor> AppendAttention(
@@ -415,6 +416,7 @@ std::vector<paddle::Tensor> AppendAttention(
const paddle::Tensor& decoder_tile_ids_per_batch,
const paddle::Tensor& decoder_num_blocks,
const paddle::Tensor& set_max_lengths,
const paddle::Tensor& max_len_kv,
const paddle::optional<paddle::Tensor>& rotary_embs,
const paddle::optional<paddle::Tensor>& attn_mask,
const paddle::optional<paddle::Tensor>& qkv_bias,
@@ -427,12 +429,7 @@ std::vector<paddle::Tensor> AppendAttention(
const paddle::optional<paddle::Tensor>& cache_v_zp,
const paddle::optional<paddle::Tensor>& out_linear_shifts,
const paddle::optional<paddle::Tensor>& out_linear_smooths,
const paddle::optional<paddle::Tensor>& mask_offset,
const paddle::optional<paddle::Tensor>& kv_signal_data,
const paddle::optional<paddle::Tensor>& q_norm_weight,
const paddle::optional<paddle::Tensor>& k_norm_weight,
const paddle::optional<paddle::Tensor>& sinks,
const float rms_norm_eps,
const std::string& compute_dtype,
const std::string& cache_quant_type_str,
const bool use_neox_rotary_style,
@@ -447,8 +444,7 @@ std::vector<paddle::Tensor> AppendAttention(
const int encoder_max_partition_size,
const int speculate_max_draft_token_num,
const bool causal,
const bool speculate_decoder,
const int sliding_window) {
const bool speculate_decoder) {
AppendAttnMetaData meta_data;
const auto& qkv_dims = qkv.dims();
@@ -468,60 +464,8 @@ std::vector<paddle::Tensor> AppendAttention(
meta_data.block_size = key_cache.dims()[2];
meta_data.batch_size = seq_lens_this_time.dims()[0];
// template dtype generation
phi::DataType dtype_id;
switch (qkv.dtype()) {
case paddle::DataType::FLOAT16: {dtype_id = phi::DataType::FLOAT16; break;}
case paddle::DataType::BFLOAT16: {dtype_id = phi::DataType::BFLOAT16; break;}
case paddle::DataType::INT32: {
if (compute_dtype == "bf16") {
dtype_id = phi::DataType::BFLOAT16;
break;
} else if (compute_dtype == "fp16") {
dtype_id = phi::DataType::FLOAT16;
break;
} else {
PD_THROW("Only supported attr of compute_dtype in ['fp16', 'bf16'].");
break;
}
}
default: {
PD_THROW(
"NOT supported data type. "
"Only float16 and bfloat16 are supported. ");
break;
}
}
// fmha_out generation, rewrite from AppendAttentionKernel
paddle::Tensor fmha_out;
if (out_linear_in_scale > 0.0) {
if (fabs(quant_max_bound - 127.0f) < 0.000001) {
fmha_out = paddle::zeros(
{meta_data.token_nums, meta_data.q_num_heads * meta_data.head_dims},
paddle::DataType::INT8,
qkv.place());
} else if (fabs(quant_max_bound - 448.0f) < 0.000001) {
fmha_out = paddle::zeros(
{meta_data.token_nums, meta_data.q_num_heads * meta_data.head_dims},
paddle::DataType::FLOAT8_E4M3FN,
qkv.place());
} else{
PD_THROW("Only supported attr of quant_max_bound in ['127', '448'].");
}
} else {
fmha_out = paddle::zeros(
{meta_data.token_nums, meta_data.q_num_heads * meta_data.head_dims},
dtype_id,
qkv.place());
}
if (mask_offset) {
meta_data.mask_offset = mask_offset.get().data<int>();
}
auto dispatch_by_template = [&](auto temp_args) -> void {
AppendAttentionKernel<type2value<decltype(temp_args)>::value>(
auto dispatch_by_template = [&](auto temp_args) -> std::vector<paddle::Tensor> {
return AppendAttentionKernel<type2value<decltype(temp_args)>::value>(
meta_data,
qkv,
key_cache,
@@ -542,7 +486,7 @@ std::vector<paddle::Tensor> AppendAttention(
decoder_tile_ids_per_batch,
decoder_num_blocks,
set_max_lengths,
fmha_out,
max_len_kv,
rotary_embs,
attn_mask,
qkv_bias,
@@ -556,10 +500,6 @@ std::vector<paddle::Tensor> AppendAttention(
out_linear_shifts,
out_linear_smooths,
kv_signal_data,
q_norm_weight,
k_norm_weight,
sinks,
rms_norm_eps,
cache_quant_type_str,
use_neox_rotary_style,
rope_3d,
@@ -573,203 +513,36 @@ std::vector<paddle::Tensor> AppendAttention(
encoder_max_partition_size,
speculate_max_draft_token_num,
causal,
speculate_decoder,
sliding_window);
};
speculate_decoder);
};
phi::dtype::float16 fp16_dtype;
phi::dtype::bfloat16 bp16_dtype;
switch (dtype_id){
case phi::DataType::FLOAT16: {
dispatch_by_template(fp16_dtype);
return {fmha_out};
}
case phi::DataType::BFLOAT16: {
dispatch_by_template(bp16_dtype);
return {fmha_out};
}
default:
PD_THROW(
switch (qkv.dtype()) {
case paddle::DataType::FLOAT16: return dispatch_by_template(fp16_dtype);
case paddle::DataType::BFLOAT16: return dispatch_by_template(bp16_dtype);
case paddle::DataType::INT32: {
if (compute_dtype == "bf16") {
return dispatch_by_template(bp16_dtype);
} else if (compute_dtype == "fp16") {
return dispatch_by_template(fp16_dtype);
} else {
PD_THROW("Only supported attr of compute_dtype in ['fp16', 'bf16'].");
break;
}
}
default: {
PD_THROW(
"NOT supported data type. "
"Only float16 and bfloat16 are supported. ");
break;
break;
}
}
return {paddle::Tensor{}};
}
std::vector<paddle::Tensor> AppendAttentionWithOutput(
const paddle::Tensor& qkv,
const paddle::Tensor& key_cache,
const paddle::Tensor& value_cache,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& seq_lens_decoder,
const paddle::Tensor& seq_lens_this_time,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& block_tables,
const paddle::Tensor& encoder_batch_ids,
const paddle::Tensor& encoder_tile_ids_per_batch,
const paddle::Tensor& encoder_num_blocks,
const paddle::Tensor& kv_batch_ids,
const paddle::Tensor& kv_tile_ids_per_batch,
const paddle::Tensor& kv_num_blocks,
const paddle::Tensor& decoder_batch_ids,
const paddle::Tensor& decoder_tile_ids_per_batch,
const paddle::Tensor& decoder_num_blocks,
const paddle::Tensor& set_max_lengths,
paddle::Tensor& fmha_out,
const paddle::optional<paddle::Tensor>& rotary_embs,
const paddle::optional<paddle::Tensor>& attn_mask,
const paddle::optional<paddle::Tensor>& qkv_bias,
const paddle::optional<paddle::Tensor>& qkv_out_scales,
const paddle::optional<paddle::Tensor>& cache_k_quant_scales,
const paddle::optional<paddle::Tensor>& cache_v_quant_scales,
const paddle::optional<paddle::Tensor>& cache_k_dequant_scales,
const paddle::optional<paddle::Tensor>& cache_v_dequant_scales,
const paddle::optional<paddle::Tensor>& cache_k_zp,
const paddle::optional<paddle::Tensor>& cache_v_zp,
const paddle::optional<paddle::Tensor>& out_linear_shifts,
const paddle::optional<paddle::Tensor>& out_linear_smooths,
const paddle::optional<paddle::Tensor>& mask_offset,
const paddle::optional<paddle::Tensor>& kv_signal_data,
const paddle::optional<paddle::Tensor>& q_norm_weight,
const paddle::optional<paddle::Tensor>& k_norm_weight,
const paddle::optional<paddle::Tensor>& sinks,
const float rms_norm_eps,
const std::string& compute_dtype,
const std::string& cache_quant_type_str,
const bool use_neox_rotary_style,
const bool rope_3d,
const int max_input_length,
const float quant_max_bound,
const float quant_min_bound,
const float out_linear_in_scale,
const int encoder_block_shape_q,
const int decoder_block_shape_q,
const int max_partition_size,
const int encoder_max_partition_size,
const int speculate_max_draft_token_num,
const bool causal,
const bool speculate_decoder,
const int sliding_window) {
AppendAttnMetaData meta_data;
const auto& qkv_dims = qkv.dims();
const auto& key_cache_dims = key_cache.dims();
meta_data.token_nums = qkv_dims[0];
meta_data.kv_num_heads = key_cache_dims[1];
meta_data.head_dims = key_cache_dims[3];
// TODO: trick method support c4, add attr head_dims in the future
if (cache_quant_type_str == "cache_int4_zp") {
meta_data.head_dims *= 2;
}
const int total_num_head =
qkv_dims[qkv_dims.size() - 1] / meta_data.head_dims;
meta_data.q_num_heads = total_num_head - 2 * meta_data.kv_num_heads;
meta_data.max_blocks_per_seq = block_tables.dims()[1];
meta_data.block_size = key_cache.dims()[2];
meta_data.batch_size = seq_lens_this_time.dims()[0];
if (mask_offset) {
meta_data.mask_offset = mask_offset.get().data<int>();
}
auto dispatch_by_template = [&](auto temp_args) -> void {
AppendAttentionKernel<type2value<decltype(temp_args)>::value>(
meta_data,
qkv,
key_cache,
value_cache,
seq_lens_encoder,
seq_lens_decoder,
seq_lens_this_time,
batch_id_per_token,
cu_seqlens_q,
block_tables,
encoder_batch_ids,
encoder_tile_ids_per_batch,
encoder_num_blocks,
kv_batch_ids,
kv_tile_ids_per_batch,
kv_num_blocks,
decoder_batch_ids,
decoder_tile_ids_per_batch,
decoder_num_blocks,
set_max_lengths,
fmha_out,
rotary_embs,
attn_mask,
qkv_bias,
qkv_out_scales,
cache_k_quant_scales,
cache_v_quant_scales,
cache_k_dequant_scales,
cache_v_dequant_scales,
cache_k_zp,
cache_v_zp,
out_linear_shifts,
out_linear_smooths,
kv_signal_data,
q_norm_weight,
k_norm_weight,
sinks,
rms_norm_eps,
cache_quant_type_str,
use_neox_rotary_style,
rope_3d,
max_input_length,
quant_max_bound,
quant_min_bound,
out_linear_in_scale,
encoder_block_shape_q,
decoder_block_shape_q,
max_partition_size,
encoder_max_partition_size,
speculate_max_draft_token_num,
causal,
speculate_decoder,
sliding_window);
};
phi::dtype::float16 fp16_dtype;
phi::dtype::bfloat16 bp16_dtype;
switch (qkv.dtype()) {
case paddle::DataType::FLOAT16: {
dispatch_by_template(fp16_dtype);
break;
}
case paddle::DataType::BFLOAT16: {
dispatch_by_template(bp16_dtype);
break;
}
case paddle::DataType::INT32: {
if (compute_dtype == "bf16") {
dispatch_by_template(bp16_dtype);
break;
} else if (compute_dtype == "fp16") {
dispatch_by_template(fp16_dtype);
break;
} else {
PD_THROW("Only supported attr of compute_dtype in ['fp16', 'bf16'].");
break;
}
}
default: {
PD_THROW(
"NOT supported data type. "
"Only float16 and bfloat16 are supported. ");
break;
}
}
return {fmha_out};
}
std::vector<std::vector<int64_t>> AppendAttentionInferShape(
const std::vector<int64_t>& qkv_shape,
const std::vector<int64_t>& key_cache_shape,
@@ -790,6 +563,7 @@ std::vector<std::vector<int64_t>> AppendAttentionInferShape(
const std::vector<int64_t>& decoder_tile_ids_per_batch_shape,
const std::vector<int64_t>& decoder_num_blocks_shape,
const std::vector<int64_t>& set_max_lengths_shape,
const std::vector<int64_t>& max_len_kv_shape,
const paddle::optional<std::vector<int64_t>>& rotary_embs_shape,
const paddle::optional<std::vector<int64_t>>& attn_mask_shape,
const paddle::optional<std::vector<int64_t>>& qkv_bias_shape,
@@ -802,12 +576,7 @@ std::vector<std::vector<int64_t>> AppendAttentionInferShape(
const paddle::optional<std::vector<int64_t>>& cache_v_zp_shape,
const paddle::optional<std::vector<int64_t>>& out_linear_shifts_shape,
const paddle::optional<std::vector<int64_t>>& out_linear_smooths_shape,
const paddle::optional<std::vector<int64_t>>& mask_offset_shape,
const paddle::optional<std::vector<int64_t>>& kv_signal_data_shape,
const paddle::optional<std::vector<int64_t>>& q_norm_weight_shape,
const paddle::optional<std::vector<int64_t>>& k_norm_weight_shape,
const paddle::optional<std::vector<int64_t>>& sinks_shape,
const float rms_norm_eps,
const std::string& compute_dtype,
const std::string& cache_quant_type_str,
const bool use_neox_rotary_style,
@@ -822,8 +591,7 @@ std::vector<std::vector<int64_t>> AppendAttentionInferShape(
const int encoder_max_partition_size,
const int speculate_max_draft_token_num,
const bool causal,
const bool speculate_decoder,
const int sliding_window) {
const bool speculate_decoder) {
const int token_num = qkv_shape[0];
const int kv_num_heads = key_cache_shape[1];
int head_dim = key_cache_shape[3];
@@ -832,7 +600,7 @@ std::vector<std::vector<int64_t>> AppendAttentionInferShape(
}
const int total_num_head = qkv_shape[qkv_shape.size() - 1] / head_dim;
const int num_heads = total_num_head - 2 * kv_num_heads;
return {{token_num, num_heads * head_dim}};
return {{token_num, num_heads * head_dim}, qkv_shape};
}
std::vector<paddle::DataType> AppendAttentionInferDtype(
@@ -855,6 +623,7 @@ std::vector<paddle::DataType> AppendAttentionInferDtype(
const paddle::DataType& decoder_tile_ids_per_batch_dtype,
const paddle::DataType& decoder_num_blocks_dtype,
const paddle::DataType& set_max_lengths_dtype,
const paddle::DataType& max_len_kv_dtype,
const paddle::optional<paddle::DataType>& rotary_embs_dtype,
const paddle::optional<paddle::DataType>& attn_mask_dtype,
const paddle::optional<paddle::DataType>& qkv_bias_dtype,
@@ -867,12 +636,7 @@ std::vector<paddle::DataType> AppendAttentionInferDtype(
const paddle::optional<paddle::DataType>& cache_v_zp_dtype,
const paddle::optional<paddle::DataType>& out_linear_shifts_dtype,
const paddle::optional<paddle::DataType>& out_linear_smooths_dtype,
const paddle::optional<paddle::DataType>& mask_offset_dtype,
const paddle::optional<paddle::DataType>& kv_signal_data_dtype,
const paddle::optional<paddle::DataType>& q_norm_weight_dtype,
const paddle::optional<paddle::DataType>& k_norm_weight_dtype,
const paddle::optional<paddle::DataType>& sinks_dtype,
const float rms_norm_eps,
const std::string& compute_dtype,
const std::string& cache_quant_type_str,
const bool use_neox_rotary_style,
@@ -887,155 +651,36 @@ std::vector<paddle::DataType> AppendAttentionInferDtype(
const int encoder_max_partition_size,
const int speculate_max_draft_token_num,
const bool causal,
const bool speculate_decoder,
const int sliding_window) {
const bool speculate_decoder) {
if (compute_dtype == "bf16") {
if (out_linear_in_scale > 0.0) {
if (fabs(quant_max_bound - 127.0f) < 0.000001) {
return {paddle::DataType::INT8};
return {paddle::DataType::INT8, paddle::DataType::BFLOAT16};
} else if (fabs(quant_max_bound - 448.0f) < 0.000001) {
return {paddle::DataType::FLOAT8_E4M3FN};
return {paddle::DataType::FLOAT8_E4M3FN, paddle::DataType::BFLOAT16};
}else{
PD_THROW("Only supported attr of quant_max_bound in ['127.0', '448.0'].");
}
} else {
return {paddle::DataType::BFLOAT16};
return {paddle::DataType::BFLOAT16, paddle::DataType::BFLOAT16};
}
} else if (compute_dtype == "fp16") {
if (out_linear_in_scale > 0.0) {
if (fabs(quant_max_bound - 127.0f) < 0.000001) {
return {paddle::DataType::INT8};
return {paddle::DataType::INT8, paddle::DataType::FLOAT16};
} else if (fabs(quant_max_bound - 448.0f) < 0.000001) {
return {paddle::DataType::FLOAT8_E4M3FN};
return {paddle::DataType::FLOAT8_E4M3FN, paddle::DataType::FLOAT16};
}else{
PD_THROW("Only supported attr of quant_max_bound in ['127.0', '448.0'].");
}
} else {
return {paddle::DataType::FLOAT16};
return {paddle::DataType::FLOAT16, paddle::DataType::FLOAT16};
}
} else {
PD_THROW("Only supported attr of compute_dtype in ['fp16', 'bf16'].");
}
}
std::vector<std::vector<int64_t>> AppendAttentionWithOutputInferShape(
const std::vector<int64_t>& qkv_shape,
const std::vector<int64_t>& key_cache_shape,
const std::vector<int64_t>& value_cache_shape,
const std::vector<int64_t>& seq_lens_encoder_shape,
const std::vector<int64_t>& seq_lens_decoder_shape,
const std::vector<int64_t>& seq_lens_this_time_shape,
const std::vector<int64_t>& batch_id_per_token_shape,
const std::vector<int64_t>& cu_seqlens_q_shape,
const std::vector<int64_t>& block_tables_shape,
const std::vector<int64_t>& encoder_batch_ids_shape,
const std::vector<int64_t>& encoder_tile_ids_per_batch_shape,
const std::vector<int64_t>& encoder_num_blocks_shape,
const std::vector<int64_t>& kv_batch_ids_shape,
const std::vector<int64_t>& kv_tile_ids_per_batch_shape,
const std::vector<int64_t>& kv_num_blocks_shape,
const std::vector<int64_t>& decoder_batch_ids_shape,
const std::vector<int64_t>& decoder_tile_ids_per_batch_shape,
const std::vector<int64_t>& decoder_num_blocks_shape,
const std::vector<int64_t>& set_max_lengths_shape,
const std::vector<int64_t>& fmha_out_shape,
const paddle::optional<std::vector<int64_t>>& rotary_embs_shape,
const paddle::optional<std::vector<int64_t>>& attn_mask_shape,
const paddle::optional<std::vector<int64_t>>& qkv_bias_shape,
const paddle::optional<std::vector<int64_t>>& qkv_out_scales_shape,
const paddle::optional<std::vector<int64_t>>& cache_k_quant_scales_shape,
const paddle::optional<std::vector<int64_t>>& cache_v_quant_scales_shape,
const paddle::optional<std::vector<int64_t>>& cache_k_dequant_scales_shape,
const paddle::optional<std::vector<int64_t>>& cache_v_dequant_scales_shape,
const paddle::optional<std::vector<int64_t>>& cache_k_zp_shape,
const paddle::optional<std::vector<int64_t>>& cache_v_zp_shape,
const paddle::optional<std::vector<int64_t>>& out_linear_shifts_shape,
const paddle::optional<std::vector<int64_t>>& out_linear_smooths_shape,
const paddle::optional<std::vector<int64_t>>& mask_offset_shape,
const paddle::optional<std::vector<int64_t>>& kv_signal_data_shape,
const paddle::optional<std::vector<int64_t>>& q_norm_weight_shape,
const paddle::optional<std::vector<int64_t>>& k_norm_weight_shape,
const paddle::optional<std::vector<int64_t>>& sinks_shape,
const float rms_norm_eps,
const std::string& compute_dtype,
const std::string& cache_quant_type_str,
const bool use_neox_rotary_style,
const bool rope_3d,
const int max_input_length,
const float quant_max_bound,
const float quant_min_bound,
const float out_linear_in_scale,
const int encoder_block_shape_q,
const int decoder_block_shape_q,
const int max_partition_size,
const int encoder_max_partition_size,
const int speculate_max_draft_token_num,
const bool causal,
const bool speculate_decoder,
const int sliding_window) {
return {fmha_out_shape};
}
std::vector<paddle::DataType> AppendAttentionWithOutputInferDtype(
const paddle::DataType& qkv_dtype,
const paddle::DataType& key_cache_dtype,
const paddle::DataType& value_cache_dtype,
const paddle::DataType& seq_lens_encoder_dtype,
const paddle::DataType& seq_lens_decoder_dtype,
const paddle::DataType& seq_lens_this_time_dtype,
const paddle::DataType& batch_id_per_token_dtype,
const paddle::DataType& cu_seqlens_q_dtype,
const paddle::DataType& block_tables_dtype,
const paddle::DataType& encoder_batch_ids_dtype,
const paddle::DataType& encoder_tile_ids_per_batch_dtype,
const paddle::DataType& encoder_num_blocks_dtype,
const paddle::DataType& kv_batch_ids_dtype,
const paddle::DataType& kv_tile_ids_per_batch_dtype,
const paddle::DataType& kv_num_blocks_dtype,
const paddle::DataType& decoder_batch_ids_dtype,
const paddle::DataType& decoder_tile_ids_per_batch_dtype,
const paddle::DataType& decoder_num_blocks_dtype,
const paddle::DataType& set_max_lengths_dtype,
const paddle::DataType& fmha_out_dtype,
const paddle::optional<paddle::DataType>& rotary_embs_dtype,
const paddle::optional<paddle::DataType>& attn_mask_dtype,
const paddle::optional<paddle::DataType>& qkv_bias_dtype,
const paddle::optional<paddle::DataType>& qkv_out_scales_dtype,
const paddle::optional<paddle::DataType>& cache_k_quant_scales_dtype,
const paddle::optional<paddle::DataType>& cache_v_quant_scales_dtype,
const paddle::optional<paddle::DataType>& cache_k_dequant_scales_dtype,
const paddle::optional<paddle::DataType>& cache_v_dequant_scales_dtype,
const paddle::optional<paddle::DataType>& cache_k_zp_dtype,
const paddle::optional<paddle::DataType>& cache_v_zp_dtype,
const paddle::optional<paddle::DataType>& out_linear_shifts_dtype,
const paddle::optional<paddle::DataType>& out_linear_smooths_dtype,
const paddle::optional<paddle::DataType>& mask_offset_dtype,
const paddle::optional<paddle::DataType>& kv_signal_data_dtype,
const paddle::optional<paddle::DataType>& q_norm_weight_dtype,
const paddle::optional<paddle::DataType>& k_norm_weight_dtype,
const paddle::optional<paddle::DataType>& sinks_dtype,
const float rms_norm_eps,
const std::string& compute_dtype,
const std::string& cache_quant_type_str,
const bool use_neox_rotary_style,
const bool rope_3d,
const int max_input_length,
const float quant_max_bound,
const float quant_min_bound,
const float out_linear_in_scale,
const int encoder_block_shape_q,
const int decoder_block_shape_q,
const int max_partition_size,
const int encoder_max_partition_size,
const int speculate_max_draft_token_num,
const bool causal,
const bool speculate_decoder,
const int sliding_window) {
return {fmha_out_dtype};
}
PD_BUILD_STATIC_OP(append_attention)
.Inputs({"qkv",
"key_cache",
@@ -1056,6 +701,7 @@ PD_BUILD_STATIC_OP(append_attention)
"decoder_tile_ids_per_batch",
"decoder_num_blocks",
"set_max_lengths",
"max_len_kv",
paddle::Optional("rotary_embs"),
paddle::Optional("attn_mask"),
paddle::Optional("qkv_bias"),
@@ -1068,14 +714,11 @@ PD_BUILD_STATIC_OP(append_attention)
paddle::Optional("cache_v_zp"),
paddle::Optional("out_linear_shifts"),
paddle::Optional("out_linear_smooths"),
paddle::Optional("mask_offset"),
paddle::Optional("kv_signal_data"),
paddle::Optional("q_norm_weight"),
paddle::Optional("k_norm_weight"),
paddle::Optional("sinks")})
.Outputs({"fmha_out"})
.Attrs({"rms_norm_eps: float",
"compute_type: std::string",
paddle::Optional("kv_signal_data")})
.Outputs({"fmha_out", "qkv_out", "key_cache_out", "value_cache_out"})
.SetInplaceMap({{"key_cache", "key_cache_out"},
{"value_cache", "value_cache_out"}})
.Attrs({"compute_type: std::string",
"cache_quant_type: std::string",
"use_neox_rotary_style: bool",
"rope_3d: bool",
@@ -1089,71 +732,7 @@ PD_BUILD_STATIC_OP(append_attention)
"encoder_max_partition_size: int",
"speculate_max_draft_token_num: int",
"causal: bool",
"speculate_decoder: bool",
"sliding_window: int",
})
"speculate_decoder: bool"})
.SetKernelFn(PD_KERNEL(AppendAttention))
.SetInferShapeFn(PD_INFER_SHAPE(AppendAttentionInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(AppendAttentionInferDtype));
PD_BUILD_STATIC_OP(append_attention_with_output)
.Inputs({"qkv",
"key_cache",
"value_cache",
"seq_lens_encoder",
"seq_lens_decoder",
"seq_lens_this_time",
"batch_id_per_token",
"cu_seqlens_q",
"block_tables",
"encoder_batch_ids",
"encoder_tile_ids_per_batch",
"encoder_num_blocks",
"kv_batch_ids",
"kv_tile_ids_per_batch",
"kv_num_blocks",
"decoder_batch_ids",
"decoder_tile_ids_per_batch",
"decoder_num_blocks",
"set_max_lengths",
"fmha_out",
paddle::Optional("rotary_embs"),
paddle::Optional("attn_mask"),
paddle::Optional("qkv_bias"),
paddle::Optional("qkv_out_scales"),
paddle::Optional("cache_k_quant_scales"),
paddle::Optional("cache_v_quant_scales"),
paddle::Optional("cache_k_dequant_scales"),
paddle::Optional("cache_v_dequant_scales"),
paddle::Optional("cache_k_zp"),
paddle::Optional("cache_v_zp"),
paddle::Optional("out_linear_shifts"),
paddle::Optional("out_linear_smooths"),
paddle::Optional("mask_offset"),
paddle::Optional("kv_signal_data"),
paddle::Optional("q_norm_weight"),
paddle::Optional("k_norm_weight"),
paddle::Optional("sinks")})
.Outputs({"fmha_out_out"})
.SetInplaceMap({{"fmha_out", "fmha_out_out"}})
.Attrs({"rms_norm_eps: float",
"compute_type: std::string",
"cache_quant_type: std::string",
"use_neox_rotary_style: bool",
"rope_3d: bool",
"max_input_length: int",
"quant_max_bound: float",
"quant_min_bound: float",
"out_linear_in_scale: float",
"encoder_block_shape_q: int",
"decoder_block_shape_q: int",
"max_partition_size: int",
"encoder_max_partition_size: int",
"speculate_max_draft_token_num: int",
"causal: bool",
"speculate_decoder: bool",
"sliding_window: int",
})
.SetKernelFn(PD_KERNEL(AppendAttentionWithOutput))
.SetInferShapeFn(PD_INFER_SHAPE(AppendAttentionWithOutputInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(AppendAttentionWithOutputInferDtype));

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -77,14 +77,6 @@ struct prefill_softmax_state_t {
__device__ __forceinline__ void normalize() {
const T d_t = static_cast<T>(d);
#pragma unroll
for (size_t i = 0; i < vec_size; ++i) {
o[i] /= d_t;
}
}
__device__ __forceinline__ void normalize(float current_sink) {
const T d_t = static_cast<T>(d + __expf(current_sink - m));
#pragma unroll
for (size_t i = 0; i < vec_size; ++i) {
o[i] /= d_t;
@@ -392,113 +384,6 @@ __device__ __forceinline__ void produce_v_blockwise_c8(
}
}
template<uint32_t block_size,
uint32_t num_frags_z,
uint32_t NUM_WARP_Q,
typename T>
__device__ __forceinline__ void produce_k_dynamic_scale(
T* k_smem_scale,
T* cache_k_reg,
const int* block_table_now,
const T* cache_k_scale,
const uint32_t kv_idx,
const uint32_t kv_num_heads,
const uint32_t kv_head_idx,
const uint32_t chunk_end
) {
const uint32_t tx = threadIdx.x, ty = threadIdx.y;
if constexpr (NUM_WARP_Q == 4) {
// 4 warps shared block_size
const uint32_t tid = ty * 32 + tx;
int block_id = __ldg(&block_table_now[kv_idx / block_size]);
if (block_id < 0) block_id = 0;
const T* cache_k_scale_now = cache_k_scale + block_id * kv_num_heads * block_size + kv_head_idx * block_size;
if (tid < block_size) {
k_smem_scale[tid] = cache_k_scale_now[tid];
}
__syncthreads();
const uint32_t row_id = tx / 4;
for (uint32_t fz = 0; fz < num_frags_z; fz++) {
cache_k_reg[fz * 2] = k_smem_scale[fz * 16 + row_id];
cache_k_reg[fz * 2 + 1] = k_smem_scale[fz * 16 + row_id + 8];
}
} else {
// 1 warp 32 tokens
const uint32_t kv_idx_now = kv_idx + block_size * ty / 2;
int block_id = __ldg(&block_table_now[kv_idx_now / block_size]);
if (block_id < 0) block_id = 0;
const T* cache_k_scale_now = cache_k_scale + block_id * kv_num_heads * block_size + kv_head_idx * block_size;
const int kv_idx_this_thread = kv_idx + ty * 32 + tx;
if (kv_idx_this_thread < chunk_end) {
k_smem_scale[ty * 32 + tx] = cache_k_scale_now[(ty % 2) * 32 + tx];
} else {
k_smem_scale[ty * 32 + tx] = 0;
}
__syncwarp();
const uint32_t row_id = tx / 4;
for (uint32_t fz = 0; fz < num_frags_z; fz++) {
cache_k_reg[fz * 2] = k_smem_scale[ty * 32 + fz * 16 + row_id];
cache_k_reg[fz * 2 + 1] = k_smem_scale[ty * 32 + fz * 16 + row_id + 8];
}
}
}
template<uint32_t block_size,
uint32_t num_frags_z,
uint32_t NUM_WARP_Q,
typename T>
__device__ __forceinline__ void produce_v_dynamic_scale(
T* v_smem_scale,
T* cache_v_reg,
const int* block_table_now,
const T* cache_v_scale,
const uint32_t kv_idx,
const uint32_t kv_num_heads,
const uint32_t kv_head_idx,
const uint32_t chunk_end
) {
const uint32_t tx = threadIdx.x, ty = threadIdx.y;
if constexpr (NUM_WARP_Q == 4) {
// 4 warps shared block_size
const uint32_t tid = ty * 32 + tx;
int block_id = __ldg(&block_table_now[kv_idx / block_size]);
if (block_id < 0) block_id = 0;
const T* cache_v_scale_now = cache_v_scale + block_id * kv_num_heads * block_size + kv_head_idx * block_size;
if (tid < block_size) {
v_smem_scale[tid] = cache_v_scale_now[tid];
}
__syncthreads();
const uint32_t row_id = tx % 4 * 2;
for (uint32_t fz = 0; fz < num_frags_z; fz++) {
cache_v_reg[fz * 4] = v_smem_scale[fz * 16 + row_id];
cache_v_reg[fz * 4 + 1] = v_smem_scale[fz * 16 + row_id + 1];
cache_v_reg[fz * 4 + 2] = v_smem_scale[fz * 16 + row_id + 8];
cache_v_reg[fz * 4 + 3] = v_smem_scale[fz * 16 + row_id + 9];
}
} else {
// 1 warp 32 tokens
const uint32_t kv_idx_now = kv_idx + block_size * ty / 2;
int block_id = __ldg(&block_table_now[kv_idx_now / block_size]);
if (block_id < 0) block_id = 0;
const T* cache_v_scale_now = cache_v_scale + block_id * kv_num_heads * block_size + kv_head_idx * block_size;
const int kv_idx_this_thread = kv_idx + ty * 32 + tx;
if (kv_idx_this_thread < chunk_end) {
v_smem_scale[ty * 32 + tx] = cache_v_scale_now[(ty % 2) * 32 + tx];
} else {
v_smem_scale[ty * 32 + tx] = 0;
}
__syncwarp();
const uint32_t row_id = tx % 4 * 2;
for (uint32_t fz = 0; fz < num_frags_z; fz++) {
cache_v_reg[fz * 4] = v_smem_scale[ty * 32 + fz * 16 + row_id];
cache_v_reg[fz * 4 + 1] = v_smem_scale[ty * 32 + fz * 16 + row_id + 1];
cache_v_reg[fz * 4 + 2] = v_smem_scale[ty * 32 + fz * 16 + row_id + 8];
cache_v_reg[fz * 4 + 3] = v_smem_scale[ty * 32 + fz * 16 + row_id + 9];
}
}
}
template <SharedMemFillMode fill_mode,
uint32_t num_warps,
uint32_t block_size,
@@ -931,8 +816,7 @@ template <uint32_t num_frags_x,
typename T,
typename CacheT,
bool is_scale_channel_wise = false,
bool IsFP8 = false,
bool IsDynamicC8 = false>
bool IsFP8=false>
__device__ __forceinline__ void compute_qk_c8(smem_t* q_smem,
uint32_t* q_smem_offset_r,
smem_t* k_smem,
@@ -976,27 +860,20 @@ __device__ __forceinline__ void compute_qk_c8(smem_t* q_smem,
convert_c8<T,IsFP8>(b_frag_dq_T, b_frag[fy * 2]);
convert_c8<T,IsFP8>(b_frag_dq_T + 4, b_frag[fy * 2 + 1]);
// scale zp
if constexpr (!IsDynamicC8) {
if constexpr (is_scale_channel_wise) {
const int scale_col = (ky * 2 + fy) * 4;
b_frag_dq_T[0] *= cache_k_scale[scale_col];
b_frag_dq_T[1] *= cache_k_scale[scale_col + 1];
b_frag_dq_T[2] *= cache_k_scale[scale_col + 2];
b_frag_dq_T[3] *= cache_k_scale[scale_col + 3];
b_frag_dq_T[4] *= cache_k_scale[scale_col];
b_frag_dq_T[5] *= cache_k_scale[scale_col + 1];
b_frag_dq_T[6] *= cache_k_scale[scale_col + 2];
b_frag_dq_T[7] *= cache_k_scale[scale_col + 3];
} else {
#pragma unroll
for (uint32_t b_i = 0; b_i < 8; ++b_i) {
b_frag_dq_T[b_i] *= cache_k_scale[0];
}
}
if constexpr (is_scale_channel_wise) {
const int scale_col = (ky * 2 + fy) * 4;
b_frag_dq_T[0] *= cache_k_scale[scale_col];
b_frag_dq_T[1] *= cache_k_scale[scale_col + 1];
b_frag_dq_T[2] *= cache_k_scale[scale_col + 2];
b_frag_dq_T[3] *= cache_k_scale[scale_col + 3];
b_frag_dq_T[4] *= cache_k_scale[scale_col];
b_frag_dq_T[5] *= cache_k_scale[scale_col + 1];
b_frag_dq_T[6] *= cache_k_scale[scale_col + 2];
b_frag_dq_T[7] *= cache_k_scale[scale_col + 3];
} else {
#pragma unroll
for (uint32_t b_i = 0; b_i < 8; ++b_i) {
b_frag_dq_T[b_i] *= cache_k_scale[fz * 2 + b_i / 4];
b_frag_dq_T[b_i] *= cache_k_scale[0];
}
}
#pragma unroll
@@ -1028,16 +905,12 @@ template <typename T,
uint32_t num_frags_y,
uint32_t num_frags_z,
bool IS_SYSTEM = false>
__device__ __forceinline__ void mask_s(const bool* attn_mask,
const uint32_t qo_idx_base,
__device__ __forceinline__ void mask_s(const uint32_t qo_idx_base,
const uint32_t kv_idx_base,
const uint32_t qo_len,
const uint32_t kv_len,
const uint32_t chunk_end,
const uint32_t attn_mask_len,
float (*s_frag)[num_frags_z][8],
const int *mask_offset = nullptr,
const int sliding_window = 0) {
float (*s_frag)[num_frags_z][8]) {
const uint32_t tx = threadIdx.x;
#pragma unroll
for (uint32_t fx = 0; fx < num_frags_x; ++fx) {
@@ -1051,31 +924,10 @@ __device__ __forceinline__ void mask_s(const bool* attn_mask,
group_size,
kv_idx = kv_idx_base + fz * 16 + 2 * (tx % 4) +
8 * (reg_id / 4) + reg_id % 2;
bool out_of_boundary;
if (mask_offset) {
out_of_boundary = q_idx < qo_len ? (kv_idx >= mask_offset[q_idx * 2 + 1] || kv_idx < mask_offset[q_idx * 2]) : true;
}
else if (sliding_window > 0)
{
bool out_of_window = int(kv_idx) <= (int)kv_len + (int)q_idx - (int)qo_len - sliding_window;
out_of_boundary =
const bool out_of_boundary =
(causal
? (kv_idx > kv_len + q_idx - qo_len || out_of_window || (kv_idx >= chunk_end))
: kv_idx >= chunk_end);
}
else
{
out_of_boundary =
(causal
? (kv_idx > kv_len + q_idx - qo_len || (kv_idx >= chunk_end))
: kv_idx >= chunk_end);
if (attn_mask != nullptr && kv_idx > kv_len - qo_len && kv_idx < chunk_end && q_idx < attn_mask_len) {
const int32_t mask_idx = q_idx * attn_mask_len + kv_idx - kv_len + qo_len;
bool mask = attn_mask[mask_idx];
out_of_boundary |= mask;
}
}
? (kv_idx > kv_len + q_idx - qo_len || (kv_idx >= chunk_end))
: kv_idx >= chunk_end);
if constexpr (std::is_same<T, half>::value) {
s_frag[fx][fz][reg_id] =
out_of_boundary ? -5e4f : s_frag[fx][fz][reg_id];
@@ -1083,7 +935,6 @@ __device__ __forceinline__ void mask_s(const bool* attn_mask,
s_frag[fx][fz][reg_id] =
out_of_boundary ? -3.0e+30f : s_frag[fx][fz][reg_id];
}
} else {
const uint32_t q_idx = qo_idx_base,
kv_idx = kv_idx_base + fz * 16 + 2 * (tx % 4) +
@@ -1227,9 +1078,7 @@ template <uint32_t num_frags_x,
uint32_t block_size,
typename T,
typename CacheT,
bool is_scale_channel_wise = false,
bool IsFP8 = false,
bool IsDynamicC8 = false>
bool is_scale_channel_wise = false, bool IsFP8=false>
__device__ __forceinline__ void compute_sfm_v_c8(
smem_t* v_smem,
uint32_t* v_smem_offset_r,
@@ -1271,28 +1120,16 @@ __device__ __forceinline__ void compute_sfm_v_c8(
convert_c8<T,IsFP8>(b_frag_dq_T, b_frag[fz * 2]);
convert_c8<T,IsFP8>(b_frag_dq_T + 4, b_frag[fz * 2 + 1]);
// scale zp
if constexpr (!IsDynamicC8) {
if constexpr (is_scale_channel_wise) {
if constexpr (is_scale_channel_wise) {
#pragma unroll
for (uint32_t b_i = 0; b_i < 8; ++b_i) {
b_frag_dq_T[b_i] *= cache_v_scale[b_i / 4 + fy * 2];
}
} else {
#pragma unroll
for (uint32_t b_i = 0; b_i < 8; ++b_i) {
b_frag_dq_T[b_i] *= cache_v_scale[0];
}
for (uint32_t b_i = 0; b_i < 8; ++b_i) {
b_frag_dq_T[b_i] *= cache_v_scale[b_i / 4 + fy * 2];
}
} else {
const int scale_col = (kz * 2 + fz) * 4;
b_frag_dq_T[0] *= cache_v_scale[scale_col];
b_frag_dq_T[1] *= cache_v_scale[scale_col + 1];
b_frag_dq_T[2] *= cache_v_scale[scale_col + 2];
b_frag_dq_T[3] *= cache_v_scale[scale_col + 3];
b_frag_dq_T[4] *= cache_v_scale[scale_col];
b_frag_dq_T[5] *= cache_v_scale[scale_col + 1];
b_frag_dq_T[6] *= cache_v_scale[scale_col + 2];
b_frag_dq_T[7] *= cache_v_scale[scale_col + 3];
#pragma unroll
for (uint32_t b_i = 0; b_i < 8; ++b_i) {
b_frag_dq_T[b_i] *= cache_v_scale[0];
}
}
#pragma unroll
for (uint32_t fx = 0; fx < num_frags_x; ++fx) { // m: num_frags_x * 16
@@ -1319,9 +1156,7 @@ template <uint32_t num_frags_x,
uint32_t block_size,
typename T,
typename CacheT,
bool is_scale_channel_wise = false,
bool IsFP8 = false,
bool IsDynamicC8 = false>
bool is_scale_channel_wise = false, bool IsFP8=false>
__device__ __forceinline__ void compute_sfm_v_c8_iter_sq_bvec(
smem_t* v_smem,
uint32_t* v_smem_offset_r,
@@ -1365,28 +1200,16 @@ __device__ __forceinline__ void compute_sfm_v_c8_iter_sq_bvec(
convert_c8<T,IsFP8>(b_frag_dq_T, b_frag[fz * 2]);
convert_c8<T,IsFP8>(b_frag_dq_T + 4, b_frag[fz * 2 + 1]);
// scale zp
if constexpr (!IsDynamicC8) {
if constexpr (is_scale_channel_wise) {
if constexpr (is_scale_channel_wise) {
#pragma unroll
for (uint32_t b_i = 0; b_i < 8; ++b_i) {
b_frag_dq_T[b_i] *= cache_v_scale[b_i / 4 + fy * 2];
}
} else {
#pragma unroll
for (uint32_t b_i = 0; b_i < 8; ++b_i) {
b_frag_dq_T[b_i] *= cache_v_scale[0];
}
for (uint32_t b_i = 0; b_i < 8; ++b_i) {
b_frag_dq_T[b_i] *= cache_v_scale[b_i / 4 + fy * 2];
}
} else {
const int scale_col = (kz * 2 + fz) * 4;
b_frag_dq_T[0] *= cache_v_scale[scale_col];
b_frag_dq_T[1] *= cache_v_scale[scale_col + 1];
b_frag_dq_T[2] *= cache_v_scale[scale_col + 2];
b_frag_dq_T[3] *= cache_v_scale[scale_col + 3];
b_frag_dq_T[4] *= cache_v_scale[scale_col];
b_frag_dq_T[5] *= cache_v_scale[scale_col + 1];
b_frag_dq_T[6] *= cache_v_scale[scale_col + 2];
b_frag_dq_T[7] *= cache_v_scale[scale_col + 3];
#pragma unroll
for (uint32_t b_i = 0; b_i < 8; ++b_i) {
b_frag_dq_T[b_i] *= cache_v_scale[0];
}
}
#pragma unroll
for (uint32_t fx = 0; fx < num_frags_x; ++fx) { // m: num_frags_x * 16
@@ -1477,33 +1300,6 @@ __device__ __forceinline__ void normalize_d(float (*o_frag)[num_frags_y][8],
}
}
template <uint32_t num_frags_x, uint32_t num_frags_y>
__device__ __forceinline__ void normalize_d(float (*o_frag)[num_frags_y][8],
float (*d)[2],
float (*m)[2],
float (*current_sinks)[2]) {
float d_rcp[num_frags_x][2];
#pragma unroll
for (uint32_t fx = 0; fx < num_frags_x; ++fx) {
#pragma unroll
for (uint32_t j = 0; j < 2; ++j) {
d_rcp[fx][j] = 1.f / (d[fx][j] + __expf(current_sinks[fx][j] - m[fx][j]));
}
}
#pragma unroll
for (uint32_t fx = 0; fx < num_frags_x; ++fx) {
#pragma unroll
for (uint32_t fy = 0; fy < num_frags_y; ++fy) {
#pragma unroll
for (uint32_t reg_id = 0; reg_id < 8; ++reg_id) {
o_frag[fx][fy][reg_id] =
o_frag[fx][fy][reg_id] * d_rcp[fx][(reg_id % 4) / 2];
}
}
}
}
template <uint32_t num_frags_x,
uint32_t num_frags_y,
uint32_t NUM_WARPS,
@@ -2317,7 +2113,6 @@ __global__ void merge_multi_chunks_decoder_kernel(
const int *__restrict__ cu_seqlens_q,
const T *__restrict__ shift_bias, // [q_num_heads * HEAD_DIM]
const T *__restrict__ smooth_weight, // [q_num_heads * HEAD_DIM]
const T *__restrict__ sinks, // [q_num_heads]
OutT *__restrict__ out,
const float quant_max_bound,
const float quant_min_bound,
@@ -2355,11 +2150,17 @@ __global__ void merge_multi_chunks_decoder_kernel(
using LoadT = AlignedVector<T, vec_size>;
LoadT load_vec;
LoadT res_vec;
for (int i = 0; i < vec_size; ++i) {
res_vec[i] = T(0.f);
if constexpr (std::is_same<T, half>::value) {
#pragma unroll
for (int i = 0; i < vec_size / 2; ++i) {
*((half2 *)(&res_vec) + i) = make_half2(0, 0);
}
} else {
#pragma unroll
for (int i = 0; i < vec_size / 2; ++i) {
*((nv_bfloat162 *)(&res_vec) + i) = make_bfloat162(0, 0);
}
}
float m;
float d = 1.f;
if constexpr (std::is_same<T, half>::value) {
@@ -2375,7 +2176,8 @@ __global__ void merge_multi_chunks_decoder_kernel(
const float m_now = multi_m[offset];
const float d_now = multi_d[offset];
m = max(m_prev, m_now);
offset = offset * head_dim + vid * vec_size;
offset = (bid * num_chunks * num_heads + i * num_heads + hid) * head_dim +
vid * vec_size;
Load<T, vec_size>(&multi_out[offset], &load_vec);
const float scale1 = __expf(m_prev - m), scale2 = __expf(m_now - m);
const T scale1_T = static_cast<T>(scale1),
@@ -2401,12 +2203,7 @@ __global__ void merge_multi_chunks_decoder_kernel(
const float m_tmp = md_smem[2 * i], d_tmp = md_smem[2 * i + 1];
st.merge(load_vec, m_tmp, d_tmp);
}
if (sinks) {
float current_sink = static_cast<float>(sinks[hid]);
st.normalize(current_sink);
} else {
st.normalize();
}
st.normalize();
const uint32_t shift_smooth_offset = hid * head_dim + vid * vec_size;
AlignedVector<T, vec_size> shift_bias_vec;
@@ -2446,7 +2243,6 @@ __global__ void merge_multi_chunks_v2_kernel(
const int *__restrict__ cu_seqlens_q,
const T *__restrict__ shift_bias, // [q_num_heads * HEAD_DIM]
const T *__restrict__ smooth_weight, // [q_num_heads * HEAD_DIM]
const T *__restrict__ sinks, // [q_num_heads]
OutT *__restrict__ out,
const float quant_max_bound,
const float quant_min_bound,
@@ -2464,9 +2260,6 @@ __global__ void merge_multi_chunks_v2_kernel(
__shared__ float md_smem[bdy * 2];
for (int qid = blockIdx.x; qid < token_num; qid += gridDim.x) {
const uint32_t bid = batch_id_per_token[qid];
if(bid == -1){
continue;
}
const uint32_t local_seq_id = qid - cu_seqlens_q[bid];
const int seq_len_q = seq_lens_q[bid];
if (seq_len_q == 0) continue;
@@ -2486,8 +2279,6 @@ __global__ void merge_multi_chunks_v2_kernel(
const int num_chunks_this_seq = div_up(seq_len_kv, chunk_size);
if (num_chunks_this_seq <= 1) {
continue;
}else if (!ENABLE_PREFILL){
continue;
}
using LoadT = AlignedVector<T, vec_size>;
@@ -2564,13 +2355,7 @@ __global__ void merge_multi_chunks_v2_kernel(
const float m_tmp = md_smem[2 * i], d_tmp = md_smem[2 * i + 1];
st.merge(load_vec, m_tmp, d_tmp);
}
if (sinks) {
float current_sink = static_cast<float>(sinks[hid]);
st.normalize(current_sink);
} else {
st.normalize();
}
st.normalize();
const uint32_t shift_smooth_offset = hid * head_dim + vid * vec_size;
AlignedVector<T, vec_size> shift_bias_vec;

View File

@@ -15,9 +15,141 @@
#include "helper.h"
#include "utils.cuh"
#include "append_attention_c16_impl.cuh"
#include "append_attention_c8_impl.cuh"
#include "append_attention_c4_impl.cuh"
template <typename T, typename OutT>
void CascadeAppendAttentionC16Kernel(
const AppendAttnMetaData& meta_data,
const paddle::Tensor& qkv, // [token_num, num_heads, head_dim]
const paddle::Tensor&
cache_k, // [max_block_num, num_heads, block_size, head_dim]
const paddle::Tensor&
cache_v, // [max_block_num, num_heads, head_dim, block_size]
const paddle::optional<paddle::Tensor>& attn_mask,
const paddle::optional<paddle::Tensor>&
cache_k_scale, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
cache_v_scale, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
cache_k_zp, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
cache_v_zp, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
shift_bias, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
smooth_weight, // [num_kv_heads, head_dim]
const paddle::Tensor& seq_lens_q,
const paddle::Tensor& seq_lens_kv,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& block_table,
const paddle::Tensor& batch_ids,
const paddle::Tensor& tile_ids_per_batch,
const int num_blocks,
const int block_shape_q,
const int max_seq_len,
const int max_dec_len,
const float quant_max_bound,
const float quant_min_bound,
const float in_scale,
const int max_partition_size,
const int encoder_max_partition_size,
const int speculate_max_draft_token_num,
const bool causal,
const bool is_decoder,
const bool enable_prefill,
cudaStream_t& stream,
paddle::Tensor* out);
template <typename T, typename OutT, bool IsFP8 = false>
void CascadeAppendAttentionC8Kernel(
const AppendAttnMetaData& meta_data,
const paddle::Tensor& qkv, // [token_num, num_heads, head_dim]
const paddle::Tensor&
cache_k, // [max_block_num, num_heads, block_size, head_dim]
const paddle::Tensor&
cache_v, // [max_block_num, num_heads, head_dim, block_size]
const paddle::optional<paddle::Tensor>& attn_mask,
const paddle::optional<paddle::Tensor>&
cache_k_scale, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
cache_v_scale, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
cache_k_zp, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
cache_v_zp, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
shift_bias, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
smooth_weight, // [num_kv_heads, head_dim]
const paddle::Tensor& seq_lens_q,
const paddle::Tensor& seq_lens_kv,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& block_table,
const paddle::Tensor& batch_ids,
const paddle::Tensor& tile_ids_per_batch,
const int num_blocks,
const int block_shape_q,
const int max_seq_len,
const int max_dec_len,
const float quant_max_bound,
const float quant_min_bound,
const float in_scale,
const int max_partition_size,
const int encoder_max_partition_size,
const int speculate_max_draft_token_num,
const bool causal,
const bool is_decoder,
const bool enable_prefill,
cudaStream_t& stream,
paddle::Tensor* out);
template <typename T, typename OutT>
void CascadeAppendAttentionC4Kernel(
const AppendAttnMetaData& meta_data,
const paddle::Tensor& qkv, // [token_num, num_heads, head_dim]
const paddle::Tensor&
cache_k, // [max_block_num, num_heads, block_size, head_dim]
const paddle::Tensor&
cache_v, // [max_block_num, num_heads, head_dim, block_size]
const paddle::optional<paddle::Tensor>& attn_mask,
const paddle::optional<paddle::Tensor>&
cache_k_scale, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
cache_v_scale, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
cache_k_zp, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
cache_v_zp, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
shift_bias, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
smooth_weight, // [num_kv_heads, head_dim]
const paddle::Tensor& seq_lens_q,
const paddle::Tensor& seq_lens_kv,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& block_table,
const paddle::Tensor& batch_ids,
const paddle::Tensor& tile_ids_per_batch,
const int num_blocks,
const int block_shape_q,
const int max_seq_len,
const int max_dec_len,
const float quant_max_bound,
const float quant_min_bound,
const float in_scale,
const int max_partition_size,
const int encoder_max_partition_size,
const int speculate_max_draft_token_num,
const bool causal,
const bool is_decoder,
const bool enable_prefill,
cudaStream_t& stream,
paddle::Tensor* out);
template <typename T, typename OutT>
void CascadeAppendAttentionKernel(
@@ -40,8 +172,6 @@ void CascadeAppendAttentionKernel(
shift_bias, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
smooth_weight, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
sinks, // [num_heads]
const paddle::Tensor& seq_lens_q,
const paddle::Tensor& seq_lens_kv,
const paddle::Tensor& seq_lens_encoder,
@@ -65,8 +195,7 @@ void CascadeAppendAttentionKernel(
const bool is_decoder,
const bool enable_prefill,
cudaStream_t& stream,
paddle::Tensor* out,
const int sliding_window) {
paddle::Tensor* out) {
if (cache_quant_type_str == "none") {
CascadeAppendAttentionC16Kernel<T, OutT>(meta_data,
qkv,
@@ -79,7 +208,6 @@ void CascadeAppendAttentionKernel(
cache_v_zp,
shift_bias,
smooth_weight,
sinks,
seq_lens_q,
seq_lens_kv,
seq_lens_encoder,
@@ -102,10 +230,9 @@ void CascadeAppendAttentionKernel(
is_decoder,
enable_prefill,
stream,
out,
sliding_window);
out);
} else if (cache_quant_type_str == "cache_int8") {
CascadeAppendAttentionC8Kernel<T, OutT, false>(meta_data,
CascadeAppendAttentionC8Kernel<T, OutT>(meta_data,
qkv,
cache_k,
cache_v,
@@ -116,7 +243,6 @@ void CascadeAppendAttentionKernel(
cache_v_zp,
shift_bias,
smooth_weight,
sinks,
seq_lens_q,
seq_lens_kv,
seq_lens_encoder,
@@ -138,11 +264,9 @@ void CascadeAppendAttentionKernel(
causal,
is_decoder,
enable_prefill,
cache_quant_type_str,
stream,
out,
sliding_window);
} else if (cache_quant_type_str == "cache_fp8" or cache_quant_type_str == "block_wise_fp8") {
out);
} else if (cache_quant_type_str == "cache_fp8") {
CascadeAppendAttentionC8Kernel<T, OutT, true>(meta_data,
qkv,
cache_k,
@@ -154,7 +278,6 @@ void CascadeAppendAttentionKernel(
cache_v_zp,
shift_bias,
smooth_weight,
sinks,
seq_lens_q,
seq_lens_kv,
seq_lens_encoder,
@@ -176,10 +299,8 @@ void CascadeAppendAttentionKernel(
causal,
is_decoder,
enable_prefill,
cache_quant_type_str,
stream,
out,
sliding_window);
out);
} else if (cache_quant_type_str == "cache_int4_zp") {
CascadeAppendAttentionC4Kernel<T, OutT>(meta_data,
qkv,
@@ -192,7 +313,6 @@ void CascadeAppendAttentionKernel(
cache_v_zp,
shift_bias,
smooth_weight,
sinks,
seq_lens_q,
seq_lens_kv,
seq_lens_encoder,
@@ -215,8 +335,7 @@ void CascadeAppendAttentionKernel(
is_decoder,
enable_prefill,
stream,
out,
sliding_window);
out);
} else {
PD_THROW(
"cache_quant_type_str should be one of [none, cache_int8, "

View File

@@ -1,243 +0,0 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Universal template instantiation generator - fully based on configuration file template instantiation generation."""
import argparse
import json
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
@dataclass
class TemplateConfig:
"""Template configuration class."""
name: str # Function name
function_name: str # Actual function name
impl_file: str # Implementation file path
template_params: List[str] # Template parameter list (in order)
dispatch_params: Dict[str, List[Any]] # Dispatch parameters
data_types: Optional[List[Tuple[str, str, str]]] = None # Data type combinations (input_type, output_type, suffix)
max_instances_per_file: int = 60 # Maximum instances per file
file_prefix: str = "" # File prefix
function_signature: str = "" # Function signature template
class UniversalTemplateInstantiator:
"""Universal template instantiator - fully based on configuration file."""
def __init__(self, config_file: str):
"""Initialize the instantiator."""
self.config_file = config_file
self.configs = self._load_configs()
def _load_configs(self) -> Dict[str, TemplateConfig]:
"""Load configuration file."""
with open(self.config_file, "r", encoding="utf-8") as f:
config_data = json.load(f)
configs = {}
for name, config_dict in config_data.items():
config = TemplateConfig(**config_dict)
self._validate_config(config)
configs[name] = config
return configs
def _validate_config(self, config: TemplateConfig):
"""Validate configuration completeness."""
has_t = "T" in config.template_params
has_out_t = "OutT" in config.template_params
if (has_t or has_out_t) and not config.data_types:
raise ValueError(
f"Configuration '{config.name}' has T or OutT in template_params but no data_types configured"
)
special_params = {"T", "OutT", "NUM_WARP_Q"}
for param_name in config.template_params:
if param_name not in special_params and param_name not in config.dispatch_params:
raise ValueError(f"Template parameter '{param_name}' in '{config.name}' not found in dispatch_params")
if "NUM_WARP_Q" in config.template_params and "BLOCK_SHAPE_Q" not in config.dispatch_params:
raise ValueError(
f"Template parameter 'NUM_WARP_Q' in '{config.name}' requires 'BLOCK_SHAPE_Q' in dispatch_params"
)
def _calculate_num_warp_q(self, block_shape_q: int) -> int:
"""Calculate number of warps."""
if block_shape_q <= 32:
return 1
else:
return 4
def _build_template_args(self, config: TemplateConfig, t_in: str, t_out: str, params: Dict[str, Any]) -> str:
"""Build template arguments."""
template_args_parts = []
for param_name in config.template_params:
if param_name == "T":
if t_in:
template_args_parts.append(t_in)
else:
raise ValueError("Template parameter 'T' requires input type, but data_types is empty or invalid")
elif param_name == "OutT":
if t_out:
template_args_parts.append(t_out)
else:
raise ValueError(
"Template parameter 'OutT' requires output type, but data_types is empty or invalid"
)
elif param_name == "NUM_WARP_Q":
if "BLOCK_SHAPE_Q" in params:
num_warp_q = self._calculate_num_warp_q(params["BLOCK_SHAPE_Q"])
template_args_parts.append(str(num_warp_q))
else:
raise ValueError("Template parameter 'NUM_WARP_Q' requires 'BLOCK_SHAPE_Q' in dispatch_params")
elif param_name in params:
template_args_parts.append(str(params[param_name]))
else:
raise ValueError(f"Template parameter '{param_name}' not found in dispatch_params")
return f"<{', '.join(template_args_parts)}>"
def _generate_function_signature(self, config: TemplateConfig, template_args: str) -> str:
"""Generate function signature."""
if config.function_signature:
return config.function_signature.format(function_name=config.function_name, template_args=template_args)
else:
raise ValueError(f"Function signature not found for {config.name}")
def _generate_file_header(self, config: TemplateConfig) -> str:
"""Generate file header."""
return f"""// Generated by autogen_template_instantiation.py - Do not edit.
#pragma once
#include "../../{config.impl_file}"
"""
def _generate_template_instantiation(
self, config: TemplateConfig, t_in: str, t_out: str, params: Dict[str, Any]
) -> str:
"""Generate template instantiation."""
template_args = self._build_template_args(config, t_in, t_out, params)
return self._generate_function_signature(config, template_args)
def generate_combinations_for_type(self, config: TemplateConfig, t_in: str, t_out: str) -> List[Dict[str, Any]]:
"""Generate parameter combinations for specific type."""
combinations = []
def _generate_recursive(
params_dict: Dict[str, List[Any]], current_params: Dict[str, Any], param_names: List[str]
):
if not param_names:
combinations.append(current_params.copy())
return
param_name = param_names[0]
for value in params_dict[param_name]:
current_params[param_name] = value
_generate_recursive(params_dict, current_params, param_names[1:])
_generate_recursive(config.dispatch_params, {}, list(config.dispatch_params.keys()))
return combinations
def split_combinations(self, combinations: List[Dict[str, Any]], max_per_file: int) -> List[List[Dict[str, Any]]]:
"""Split combinations into multiple files."""
chunks = []
for i in range(0, len(combinations), max_per_file):
chunk = combinations[i : i + max_per_file]
chunks.append(chunk)
return chunks
def generate_file_content(
self,
config: TemplateConfig,
t_in: str,
t_out: str,
t_out_name: str,
file_index: int,
combinations: List[Dict[str, Any]],
) -> str:
"""Generate file content."""
content = self._generate_file_header(config)
for params in combinations:
content += self._generate_template_instantiation(config, t_in, t_out, params)
return content
def generate_for_function_type(self, function_name: str, output_dir: str):
"""Generate template instantiation files for specific function type."""
if function_name not in self.configs:
raise ValueError(f"Function type '{function_name}' not found in config")
config = self.configs[function_name]
output_path = Path(output_dir)
output_path.mkdir(exist_ok=True)
if not config.data_types:
data_types = [("", "", "")]
else:
data_types = config.data_types
for t_in, t_out, t_out_name in data_types:
combinations = self.generate_combinations_for_type(config, t_in, t_out)
if combinations:
chunks = self.split_combinations(combinations, config.max_instances_per_file)
for i, chunk in enumerate(chunks):
filename = f"{config.file_prefix}{t_out_name}_part_{i:02d}.cu"
filepath = output_path / filename
content = self.generate_file_content(config, t_in, t_out, t_out_name, i, chunk)
with open(filepath, "w", encoding="utf-8") as f:
f.write(content)
def generate_all(self, output_dir: str):
"""Generate all configured function types."""
for function_name in self.configs.keys():
print(f"Generating template instantiations for {function_name}...")
self.generate_for_function_type(function_name, output_dir)
print(f"Completed generating {function_name} template instantiations.")
def main():
"""Main function."""
parser = argparse.ArgumentParser(description="Universal template instantiation generator")
parser.add_argument(
"--config",
"-c",
type=str,
default="gpu_ops/append_attn/template_config.json",
help="Configuration file path (JSON format)",
)
parser.add_argument(
"--output",
"-o",
type=str,
default="gpu_ops/append_attn/template_instantiation/autogen",
help="Output directory",
)
args = parser.parse_args()
try:
instantiator = UniversalTemplateInstantiator(args.config)
instantiator.generate_all(args.output)
except Exception as e:
print(f"Error: {e}")
if __name__ == "__main__":
main()

View File

@@ -13,8 +13,8 @@
// limitations under the License.
#pragma once
#include "helper.h"
#include "utils.cuh"
#include "multi_head_latent_attention_kernel.h"
template <size_t vec_size, typename T>
struct softmax_state_t {

View File

@@ -11,10 +11,8 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "decode_attention_func.cuh"
#include "multiquery_decoder_attention_kernel.h"
#define CHECK(call) \
do \
@@ -473,3 +471,90 @@ void MultiQueryDecoderAttention(
// CHECK(cudaGetLastError());
// CHECK(cudaDeviceSynchronize());
}
template <typename T>
void DecodeMLAAttentionKernel(
const AppendAttnMetaData& meta_data,
const paddle::Tensor &q, // [token_num, num_heads, head_dim]
const paddle::Tensor &cache_k,
const paddle::Tensor &cache_v,
const paddle::optional<paddle::Tensor>& attn_mask,
const paddle::optional<paddle::Tensor>& shift_bias,
const paddle::optional<paddle::Tensor>& smooth_weight,
const paddle::Tensor &seq_lens_q, // q_seq_len is 1
const paddle::Tensor &seq_lens_kv,
const paddle::Tensor &batch_id_per_token,
const paddle::Tensor &cu_seqlens_q,
const paddle::Tensor &block_table,
int max_seq_len,
int max_dec_len,
float softmax_scale,
float in_scale,
bool causal,
cudaStream_t &stream,
paddle::Tensor *out) {
const auto token_num = meta_data.token_nums;
const auto block_size = meta_data.block_size;
const auto bsz = meta_data.batch_size;
const auto num_heads = meta_data.q_num_heads;
const auto group_size = meta_data.q_num_heads / meta_data.kv_num_heads;
const auto head_dim_qk = meta_data.head_dims;
const auto head_dim_v = meta_data.head_dims_v;
const float rope_scale = 0.0;
const float rope_theta = 0.0;
const uint32_t deal_each_time = get_cascade_attention_deal_each_time();
const uint32_t num_stage = get_cascade_attention_num_stages();
const uint32_t num_threads = get_cascade_attention_num_threads();
DISPATCH_CAUSAL(causal, CAUSAL,
{DISPATCH_MLA_GROUP_SIZE(group_size, GROUP_SIZE,
{DISPATCH_MLA_HEAD_DIM(head_dim_qk, HEAD_DIM_QK,
{DISPATCH_MLA_HEAD_DIM(head_dim_v, HEAD_DIM_V,
{DISPATCH_BLOCK_SIZE(block_size, BLOCK_SIZE,
{DISPATCH_DEAL_EACH_TIME(deal_each_time, DEAL_EACH_TIME,
{MultiQueryDecoderAttention<T, GROUP_SIZE, HEAD_DIM_QK, HEAD_DIM_V, BLOCK_SIZE, CAUSAL, 2, 16, DEAL_EACH_TIME>(
meta_data, stream, q, cache_k, cache_v, attn_mask, shift_bias, smooth_weight, seq_lens_q, seq_lens_kv, batch_id_per_token, cu_seqlens_q,
block_table, max_seq_len, max_dec_len, rope_scale, rope_theta, softmax_scale, in_scale, out);})})})})})});
}
template void DecodeMLAAttentionKernel<paddle::bfloat16>(
const AppendAttnMetaData& meta_data,
const paddle::Tensor &q, // [token_num, num_heads, head_dim]
const paddle::Tensor &cache_k,
const paddle::Tensor &cache_v,
const paddle::optional<paddle::Tensor>& attn_mask,
const paddle::optional<paddle::Tensor>& shift_bias,
const paddle::optional<paddle::Tensor>& smooth_weight,
const paddle::Tensor &seq_lens_q, // q_seq_len is 1
const paddle::Tensor &seq_lens_kv,
const paddle::Tensor &batch_id_per_token,
const paddle::Tensor &cu_seqlens_q,
const paddle::Tensor &block_table,
int max_seq_len,
int max_dec_len,
float softmax_scale,
float in_scale,
bool causal,
cudaStream_t &stream,
paddle::Tensor *out);
template void DecodeMLAAttentionKernel<paddle::float16>(
const AppendAttnMetaData& meta_data,
const paddle::Tensor &q, // [token_num, num_heads, head_dim]
const paddle::Tensor &cache_k,
const paddle::Tensor &cache_v,
const paddle::optional<paddle::Tensor>& attn_mask,
const paddle::optional<paddle::Tensor>& shift_bias,
const paddle::optional<paddle::Tensor>& smooth_weight,
const paddle::Tensor &seq_lens_q, // q_seq_len is 1
const paddle::Tensor &seq_lens_kv,
const paddle::Tensor &batch_id_per_token,
const paddle::Tensor &cu_seqlens_q,
const paddle::Tensor &block_table,
int max_seq_len,
int max_dec_len,
float softmax_scale,
float in_scale,
bool causal,
cudaStream_t &stream,
paddle::Tensor *out);

View File

@@ -15,73 +15,13 @@
#include "decoder_write_cache_with_rope_kernel.h"
#include "utils.cuh"
template <typename T, typename QKV_TYPE>
void append_decode_cache_rope_qk_norm(const QKV_TYPE* qkv,
T* key_cache,
T* value_cache,
T* qkv_out,
const int* block_tables,
const int* cu_seqlens_q,
const int* seq_lens,
const int* seq_lens_encoder,
const float* cos_emb,
const float* sin_emb,
const float* qkv_out_scales,
const T* qkv_biases,
const int max_seq_len,
const int max_blocks_per_seq,
const int num_heads,
const int kv_num_heads,
const int dim_head,
const int block_size,
const int bsz,
const cudaStream_t& stream,
const bool use_neox_style,
const bool rope_3d,
const float* q_norm_weight,
const float* k_norm_weight,
const float rms_norm_eps) {
const uint32_t elem_nums =
use_neox_style ? bsz * (num_heads + 2 * kv_num_heads) * dim_head / 2
: bsz * (num_heads + 2 * kv_num_heads) * dim_head;
constexpr int HEAD_DIM = 128;
constexpr int PackSize = HEAD_DIM / kWarpSize;
const int pack_num = elem_nums / PackSize;
const int blocksize = 128;
int grid_size = 1;
GetNumBlocks<128>(pack_num, &grid_size);
dim3 block_dim(kWarpSize, blocksize / kWarpSize, 1);
append_decode_cache_T_rope_qk_norm_kernel<T, PackSize>
<<<grid_size, block_dim, 0, stream>>>(reinterpret_cast<const T*>(qkv),
key_cache,
value_cache,
qkv_out,
block_tables,
cu_seqlens_q,
seq_lens,
seq_lens_encoder,
cos_emb,
sin_emb,
max_seq_len,
max_blocks_per_seq,
num_heads,
dim_head,
block_size,
elem_nums,
kv_num_heads,
rope_3d,
q_norm_weight,
k_norm_weight,
rms_norm_eps);
}
template <typename T, typename QKV_TYPE>
void append_decode_cache_rope(const QKV_TYPE* qkv,
T* key_cache,
T* value_cache,
T* qkv_out,
const int* block_tables,
const int* batch_id_per_token,
const int* cu_seqlens_q,
const int* seq_lens,
const int* seq_lens_encoder,
@@ -94,7 +34,6 @@ void append_decode_cache_rope(const QKV_TYPE* qkv,
const int num_heads,
const int kv_num_heads,
const int dim_head,
const int rotary_dim,
const int block_size,
const int bsz,
const cudaStream_t& stream,
@@ -118,6 +57,7 @@ void append_decode_cache_rope(const QKV_TYPE* qkv,
value_cache,
qkv_out,
block_tables,
batch_id_per_token,
cu_seqlens_q,
seq_lens,
seq_lens_encoder,
@@ -131,53 +71,27 @@ void append_decode_cache_rope(const QKV_TYPE* qkv,
dim_head,
block_size,
elem_nums,
kv_num_heads,
rope_3d);
kv_num_heads);
} else {
if (rotary_dim < dim_head) {
append_decode_cache_T_neox_partial_rope_kernel<T, PackSize>
<<<grid_size, blocksize, 0, stream>>>(
reinterpret_cast<const T*>(qkv),
key_cache,
value_cache,
qkv_out,
block_tables,
cu_seqlens_q,
seq_lens,
seq_lens_encoder,
cos_emb,
sin_emb,
max_seq_len,
max_blocks_per_seq,
num_heads,
dim_head,
rotary_dim,
block_size,
elem_nums,
kv_num_heads,
rope_3d);
} else {
append_decode_cache_T_neox_rope_kernel<T, PackSize>
<<<grid_size, blocksize, 0, stream>>>(
reinterpret_cast<const T*>(qkv),
key_cache,
value_cache,
qkv_out,
block_tables,
cu_seqlens_q,
seq_lens,
seq_lens_encoder,
cos_emb,
sin_emb,
max_seq_len,
max_blocks_per_seq,
num_heads,
dim_head,
block_size,
elem_nums,
kv_num_heads,
rope_3d);
}
append_decode_cache_T_neox_rope_kernel<T, PackSize>
<<<grid_size, blocksize, 0, stream>>>(reinterpret_cast<const T*>(qkv),
key_cache,
value_cache,
qkv_out,
block_tables,
batch_id_per_token,
cu_seqlens_q,
seq_lens,
seq_lens_encoder,
cos_emb,
sin_emb,
max_seq_len,
max_blocks_per_seq,
num_heads,
dim_head,
block_size,
elem_nums,
kv_num_heads);
}
} else {
if (qkv_out_scales) {
@@ -188,6 +102,7 @@ void append_decode_cache_rope(const QKV_TYPE* qkv,
value_cache,
qkv_out,
block_tables,
batch_id_per_token,
cu_seqlens_q,
seq_lens,
seq_lens_encoder,
@@ -210,6 +125,7 @@ void append_decode_cache_rope(const QKV_TYPE* qkv,
value_cache,
qkv_out,
block_tables,
batch_id_per_token,
cu_seqlens_q,
seq_lens,
seq_lens_encoder,
@@ -227,15 +143,13 @@ void append_decode_cache_rope(const QKV_TYPE* qkv,
}
}
template <typename T,
typename QKV_TYPE,
bool is_scale_channel_wise = false,
bool IsFP8 = false>
template <typename T, typename QKV_TYPE, bool is_scale_channel_wise = false, bool IsFP8=false>
void append_decode_cache_int8_rope(const QKV_TYPE* qkv,
uint8_t* key_cache,
uint8_t* value_cache,
T* qkv_out,
const int* block_tables,
const int* batch_id_per_token,
const int* cu_seqlens_q,
const int* seq_lens,
const int* seq_lens_encoder,
@@ -268,6 +182,7 @@ void append_decode_cache_int8_rope(const QKV_TYPE* qkv,
value_cache,
qkv_out,
block_tables,
batch_id_per_token,
cu_seqlens_q,
seq_lens,
seq_lens_encoder,
@@ -283,8 +198,7 @@ void append_decode_cache_int8_rope(const QKV_TYPE* qkv,
block_size,
127.0f,
-127.0f,
kv_num_heads,
rope_3d);
kv_num_heads);
} else {
append_decode_cache_int8_neox_rope_kernel<T, 4>
<<<grids, num_warps * 32, 0, stream>>>(
@@ -293,6 +207,7 @@ void append_decode_cache_int8_rope(const QKV_TYPE* qkv,
value_cache,
qkv_out,
block_tables,
batch_id_per_token,
cu_seqlens_q,
seq_lens,
seq_lens_encoder,
@@ -306,23 +221,18 @@ void append_decode_cache_int8_rope(const QKV_TYPE* qkv,
block_size,
127.0f,
-127.0f,
kv_num_heads,
rope_3d);
kv_num_heads);
}
} else {
if (qkv_out_scales) {
append_decode_cache_int8_rope_kernel<T,
4,
0,
128,
is_scale_channel_wise,
IsFP8>
append_decode_cache_int8_rope_kernel<T, 4, 0, 128, is_scale_channel_wise, IsFP8>
<<<grids, num_warps * 32, 0, stream>>>(
reinterpret_cast<const int*>(qkv),
key_cache,
value_cache,
qkv_out,
block_tables,
batch_id_per_token,
cu_seqlens_q,
seq_lens,
seq_lens_encoder,
@@ -338,21 +248,16 @@ void append_decode_cache_int8_rope(const QKV_TYPE* qkv,
block_size,
127.0f,
-127.0f,
kv_num_heads,
rope_3d);
kv_num_heads);
} else {
append_decode_cache_int8_rope_kernel<T,
4,
0,
128,
is_scale_channel_wise,
IsFP8>
append_decode_cache_int8_rope_kernel<T, 4, 0, 128, is_scale_channel_wise, IsFP8>
<<<grids, num_warps * 32, 0, stream>>>(
reinterpret_cast<const T*>(qkv),
key_cache,
value_cache,
qkv_out,
block_tables,
batch_id_per_token,
cu_seqlens_q,
seq_lens,
seq_lens_encoder,
@@ -366,8 +271,7 @@ void append_decode_cache_int8_rope(const QKV_TYPE* qkv,
block_size,
127.0f,
-127.0f,
kv_num_heads,
rope_3d);
kv_num_heads);
}
}
}
@@ -378,6 +282,7 @@ void append_decode_cache_int4_rope(const QKV_TYPE* qkv,
uint8_t* value_cache,
T* qkv_out,
const int* block_tables,
const int* batch_id_per_token,
const int* cu_seqlens_q,
const int* seq_lens,
const int* seq_lens_encoder,
@@ -412,6 +317,7 @@ void append_decode_cache_int4_rope(const QKV_TYPE* qkv,
value_cache,
qkv_out,
block_tables,
batch_id_per_token,
cu_seqlens_q,
seq_lens,
seq_lens_encoder,
@@ -429,8 +335,7 @@ void append_decode_cache_int4_rope(const QKV_TYPE* qkv,
block_size,
7.0f,
-8.0f,
kv_num_heads,
rope_3d);
kv_num_heads);
} else {
append_decode_cache_int4_neox_rope_kernel<T, 4>
<<<grids, num_warps * 32, 0, stream>>>(
@@ -439,6 +344,7 @@ void append_decode_cache_int4_rope(const QKV_TYPE* qkv,
value_cache,
qkv_out,
block_tables,
batch_id_per_token,
cu_seqlens_q,
seq_lens,
seq_lens_encoder,
@@ -454,8 +360,7 @@ void append_decode_cache_int4_rope(const QKV_TYPE* qkv,
block_size,
7.0f,
-8.0f,
kv_num_heads,
rope_3d);
kv_num_heads);
}
} else {
if (qkv_out_scales) {
@@ -466,6 +371,7 @@ void append_decode_cache_int4_rope(const QKV_TYPE* qkv,
value_cache,
qkv_out,
block_tables,
batch_id_per_token,
cu_seqlens_q,
seq_lens,
seq_lens_encoder,
@@ -483,8 +389,7 @@ void append_decode_cache_int4_rope(const QKV_TYPE* qkv,
block_size,
7.0f,
-8.0f,
kv_num_heads,
rope_3d);
kv_num_heads);
} else {
append_decode_cache_int4_rope_kernel<T, 4>
<<<grids, num_warps * 32, 0, stream>>>(
@@ -493,6 +398,7 @@ void append_decode_cache_int4_rope(const QKV_TYPE* qkv,
value_cache,
qkv_out,
block_tables,
batch_id_per_token,
cu_seqlens_q,
seq_lens,
seq_lens_encoder,
@@ -508,8 +414,7 @@ void append_decode_cache_int4_rope(const QKV_TYPE* qkv,
block_size,
7.0f,
-8.0f,
kv_num_heads,
rope_3d);
kv_num_heads);
}
}
}
@@ -519,6 +424,7 @@ void DecoderWriteCacheWithRoPEKernel(
const paddle::Tensor& qkv,
const paddle::Tensor& seq_lens,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& block_tables,
const paddle::optional<paddle::Tensor>& rotary_embs,
@@ -535,10 +441,7 @@ void DecoderWriteCacheWithRoPEKernel(
cudaStream_t& stream,
paddle::Tensor* qkv_out,
paddle::Tensor* key_cache_out,
paddle::Tensor* value_cache_out,
const paddle::optional<paddle::Tensor>& q_norm_weight,
const paddle::optional<paddle::Tensor>& k_norm_weight,
const float rms_norm_eps) {
paddle::Tensor* value_cache_out) {
typedef cascade_attn_type_traits<T> traits_;
typedef cascade_attn_type_traits<QKV_TYPE> qkt_nv_type_;
typedef typename traits_::type DataType_;
@@ -555,145 +458,85 @@ void DecoderWriteCacheWithRoPEKernel(
const float* cos_emb =
rotary_embs ? rotary_embs.get().data<float>() : nullptr;
const float* sin_emb;
int rotary_dim = dim_head;
if (rotary_embs) {
sin_emb =
use_neox_rotary_style
? rotary_embs.get().data<float>() + max_seq_len * dim_head
: rotary_embs.get().data<float>() + max_seq_len * dim_head / 2;
rotary_dim =
rotary_embs.get().dims()[rotary_embs.get().dims().size() - 1] * 2;
if (rotary_dim < dim_head) {
if (!use_neox_rotary_style || qkv_out_scales || q_norm_weight ||
k_norm_weight || cache_quant_type_str != "none") {
PADDLE_THROW(phi::errors::Fatal(
"partial_rotary_factor < 1.0 only supports neox_rotary_style=True, "
"qkv_out_scales is None, q_norm_weight/k_norm_weight) is None, and "
"cache_quant_type_str is 'none'."));
}
sin_emb = rotary_embs.get().data<float>() + max_seq_len * rotary_dim / 2;
}
}
if (q_norm_weight && k_norm_weight) {
if (cache_quant_type_str == "none") {
append_decode_cache_rope_qk_norm(
reinterpret_cast<const QKV_TYPE*>(qkv_ptr),
reinterpret_cast<DataType_*>(key_cache_out->data<T>()),
reinterpret_cast<DataType_*>(value_cache_out->data<T>()),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? reinterpret_cast<DataType_*>(
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
block_size,
bsz,
stream,
use_neox_rotary_style,
rope_3d,
q_norm_weight ? q_norm_weight.get().data<float>() : nullptr,
k_norm_weight ? k_norm_weight.get().data<float>() : nullptr,
rms_norm_eps);
} else if (cache_quant_type_str == "block_wise_fp8") {
constexpr int num_warps = 4;
const int all_warps = ((num_heads + 2 * kv_num_heads) + num_warps - 1) /
num_warps * num_warps;
dim3 grids(bsz, all_warps / num_warps);
append_decode_cache_int8_rope_qk_norm_kernel<DataType_,
4,
0,
128,
false,
true,
true>
<<<grids, num_warps * 32, 0, stream>>>(
reinterpret_cast<const DataType_*>(qkv_ptr),
key_cache_out->data<uint8_t>(),
value_cache_out->data<uint8_t>(),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
const_cast<DataType_*>(reinterpret_cast<const DataType_*>(
cache_k_scale.get().data<T>())),
const_cast<DataType_*>(reinterpret_cast<const DataType_*>(
(cache_v_scale.get().data<T>()))),
q_norm_weight.get().data<float>(),
k_norm_weight.get().data<float>(),
max_seq_len,
max_blocks_per_seq,
num_heads,
block_size,
127.0f,
-127.0f,
kv_num_heads,
rope_3d,
rms_norm_eps);
} else if ((cache_quant_type_str == "cache_fp8")) {
constexpr int num_warps = 4;
const int all_warps = ((num_heads + 2 * kv_num_heads) + num_warps - 1) /
num_warps * num_warps;
dim3 grids(bsz, all_warps / num_warps);
append_decode_cache_int8_rope_qk_norm_kernel<DataType_,
4,
0,
128,
false,
true,
false>
<<<grids, num_warps * 32, 0, stream>>>(
reinterpret_cast<const DataType_*>(qkv_ptr),
key_cache_out->data<uint8_t>(),
value_cache_out->data<uint8_t>(),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
const_cast<DataType_*>(reinterpret_cast<const DataType_*>(
cache_k_scale.get().data<T>())),
const_cast<DataType_*>(reinterpret_cast<const DataType_*>(
(cache_v_scale.get().data<T>()))),
q_norm_weight.get().data<float>(),
k_norm_weight.get().data<float>(),
max_seq_len,
max_blocks_per_seq,
num_heads,
block_size,
127.0f,
-127.0f,
kv_num_heads,
rope_3d,
rms_norm_eps);
} else {
PD_THROW(
"append_decode_cache_rope_qk_norm just supports cache_quant_type "
"none/block_wise_fp8/cache_fp8");
if (cache_quant_type_str == "none") {
append_decode_cache_rope(
reinterpret_cast<const QKV_TYPE*>(qkv_ptr),
reinterpret_cast<DataType_*>(key_cache_out->data<T>()),
reinterpret_cast<DataType_*>(value_cache_out->data<T>()),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? reinterpret_cast<DataType_*>(
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
block_size,
bsz,
stream,
use_neox_rotary_style,
rope_3d);
} else if (cache_quant_type_str == "cache_int8") {
bool is_scale_channel_wise = false;
if (cache_k_scale && cache_k_scale.get().dims()[0] == dim_head * kv_num_heads) {
is_scale_channel_wise = true;
}
} else {
if (cache_quant_type_str == "none") {
append_decode_cache_rope(
if (is_scale_channel_wise) {
append_decode_cache_int8_rope<DataType_, QKV_TYPE, true>(
reinterpret_cast<const QKV_TYPE*>(qkv_ptr),
key_cache_out->data<uint8_t>(),
value_cache_out->data<uint8_t>(),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? reinterpret_cast<DataType_*>(
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
cache_k_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_k_scale.get().data<T>()))
: nullptr,
cache_v_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_v_scale.get().data<T>()))
: nullptr,
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
block_size,
bsz,
stream,
use_neox_rotary_style,
rope_3d);
} else {
append_decode_cache_int8_rope<DataType_, QKV_TYPE, false>(
reinterpret_cast<const QKV_TYPE*>(qkv_ptr),
reinterpret_cast<DataType_*>(key_cache_out->data<T>()),
reinterpret_cast<DataType_*>(value_cache_out->data<T>()),
key_cache_out->data<uint8_t>(),
value_cache_out->data<uint8_t>(),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
@@ -701,97 +544,33 @@ void DecoderWriteCacheWithRoPEKernel(
sin_emb,
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? reinterpret_cast<DataType_*>(
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
cache_k_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_k_scale.get().data<T>()))
: nullptr,
cache_v_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_v_scale.get().data<T>()))
: nullptr,
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
rotary_dim,
block_size,
bsz,
stream,
use_neox_rotary_style,
rope_3d);
} else if (cache_quant_type_str == "cache_int8") {
bool is_scale_channel_wise = false;
if (cache_k_scale &&
cache_k_scale.get().dims()[0] == dim_head * kv_num_heads) {
is_scale_channel_wise = true;
}
if (is_scale_channel_wise) {
append_decode_cache_int8_rope<DataType_, QKV_TYPE, true>(
reinterpret_cast<const QKV_TYPE*>(qkv_ptr),
key_cache_out->data<uint8_t>(),
value_cache_out->data<uint8_t>(),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? reinterpret_cast<DataType_*>(
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
cache_k_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_k_scale.get().data<T>()))
: nullptr,
cache_v_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_v_scale.get().data<T>()))
: nullptr,
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
block_size,
bsz,
stream,
use_neox_rotary_style,
rope_3d);
} else {
append_decode_cache_int8_rope<DataType_, QKV_TYPE, false>(
reinterpret_cast<const QKV_TYPE*>(qkv_ptr),
key_cache_out->data<uint8_t>(),
value_cache_out->data<uint8_t>(),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? reinterpret_cast<DataType_*>(
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
cache_k_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_k_scale.get().data<T>()))
: nullptr,
cache_v_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_v_scale.get().data<T>()))
: nullptr,
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
block_size,
bsz,
stream,
use_neox_rotary_style,
rope_3d);
}
} else if (cache_quant_type_str == "cache_fp8") {
}
} else if (cache_quant_type_str == "cache_fp8") {
append_decode_cache_int8_rope<DataType_, QKV_TYPE, false, true>(
reinterpret_cast<const QKV_TYPE*>(qkv_ptr),
key_cache_out->data<uint8_t>(),
value_cache_out->data<uint8_t>(),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
@@ -799,8 +578,8 @@ void DecoderWriteCacheWithRoPEKernel(
sin_emb,
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? reinterpret_cast<DataType_*>(
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
cache_k_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_k_scale.get().data<T>()))
: nullptr,
@@ -817,89 +596,53 @@ void DecoderWriteCacheWithRoPEKernel(
stream,
use_neox_rotary_style,
rope_3d);
} else if (cache_quant_type_str == "block_wise_fp8") {
constexpr int num_warps = 4;
const int all_warps = ((num_heads + 2 * kv_num_heads) + num_warps - 1) /
num_warps * num_warps;
dim3 grids(bsz, all_warps / num_warps);
append_decode_cache_int8_rope_qk_norm_kernel<DataType_,
4,
0,
128,
false,
true>
<<<grids, num_warps * 32, 0, stream>>>(
reinterpret_cast<const DataType_*>(qkv_ptr),
key_cache_out->data<uint8_t>(),
value_cache_out->data<uint8_t>(),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
const_cast<DataType_*>(reinterpret_cast<const DataType_*>(
cache_k_scale.get().data<T>())),
const_cast<DataType_*>(reinterpret_cast<const DataType_*>(
(cache_v_scale.get().data<T>()))),
nullptr,
nullptr,
max_seq_len,
max_blocks_per_seq,
num_heads,
block_size,
127.0f,
-127.0f,
kv_num_heads,
rope_3d,
rms_norm_eps);
} else if (cache_quant_type_str == "cache_int4_zp") {
append_decode_cache_int4_rope(
reinterpret_cast<const QKV_TYPE*>(qkv_ptr),
key_cache_out->data<uint8_t>(),
value_cache_out->data<uint8_t>(),
reinterpret_cast<DataType_*>(const_cast<T*>(qkv_out->data<T>())),
block_tables.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? reinterpret_cast<DataType_*>(
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
cache_k_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_k_scale.get().data<T>()))
: nullptr,
cache_v_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_v_scale.get().data<T>()))
: nullptr,
cache_k_zp ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_k_zp.get().data<T>()))
: nullptr,
cache_v_zp ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_v_zp.get().data<T>()))
: nullptr,
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
block_size,
bsz,
stream,
use_neox_rotary_style,
rope_3d);
} else {
PD_THROW(
"cache_quant_type_str should be one of [none, cache_int8, cache_fp8 "
"cache_int4_zp]");
}
} else if (cache_quant_type_str == "cache_int4_zp") {
append_decode_cache_int4_rope(
reinterpret_cast<const QKV_TYPE*>(qkv_ptr),
key_cache_out->data<uint8_t>(),
value_cache_out->data<uint8_t>(),
reinterpret_cast<DataType_*>(const_cast<T*>(qkv_out->data<T>())),
block_tables.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? reinterpret_cast<DataType_*>(
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
cache_k_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_k_scale.get().data<T>()))
: nullptr,
cache_v_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_v_scale.get().data<T>()))
: nullptr,
cache_k_zp ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_k_zp.get().data<T>()))
: nullptr,
cache_v_zp ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_v_zp.get().data<T>()))
: nullptr,
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
block_size,
bsz,
stream,
use_neox_rotary_style,
rope_3d);
} else {
PD_THROW(
"cache_quant_type_str should be one of [none, cache_int8, cache_fp8 "
"cache_int4_zp]");
}
}
template void DecoderWriteCacheWithRoPEKernel<paddle::bfloat16, int>(
const AppendAttnMetaData& meta_data,
const paddle::Tensor&
@@ -907,6 +650,7 @@ template void DecoderWriteCacheWithRoPEKernel<paddle::bfloat16, int>(
// kv_num_heads, head_dim] if GQA)
const paddle::Tensor& seq_lens,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& block_tables,
const paddle::optional<paddle::Tensor>& rotary_embs,
@@ -923,10 +667,7 @@ template void DecoderWriteCacheWithRoPEKernel<paddle::bfloat16, int>(
cudaStream_t& stream,
paddle::Tensor* qkv_out,
paddle::Tensor* key_cache_out,
paddle::Tensor* value_cache_out,
const paddle::optional<paddle::Tensor>& q_norm_weight,
const paddle::optional<paddle::Tensor>& k_norm_weight,
const float rms_norm_eps);
paddle::Tensor* value_cache_out);
template void
DecoderWriteCacheWithRoPEKernel<paddle::bfloat16, paddle::bfloat16>(
@@ -936,6 +677,7 @@ DecoderWriteCacheWithRoPEKernel<paddle::bfloat16, paddle::bfloat16>(
// kv_num_heads, head_dim] if GQA)
const paddle::Tensor& seq_lens,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& block_tables,
const paddle::optional<paddle::Tensor>& rotary_embs,
@@ -952,10 +694,7 @@ DecoderWriteCacheWithRoPEKernel<paddle::bfloat16, paddle::bfloat16>(
cudaStream_t& stream,
paddle::Tensor* qkv_out,
paddle::Tensor* key_cache_out,
paddle::Tensor* value_cache_out,
const paddle::optional<paddle::Tensor>& q_norm_weight,
const paddle::optional<paddle::Tensor>& k_norm_weight,
const float rms_norm_eps);
paddle::Tensor* value_cache_out);
template void DecoderWriteCacheWithRoPEKernel<paddle::float16, int>(
const AppendAttnMetaData& meta_data,
@@ -964,6 +703,7 @@ template void DecoderWriteCacheWithRoPEKernel<paddle::float16, int>(
// kv_num_heads, head_dim] if GQA)
const paddle::Tensor& seq_lens,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& block_tables,
const paddle::optional<paddle::Tensor>& rotary_embs,
@@ -980,10 +720,7 @@ template void DecoderWriteCacheWithRoPEKernel<paddle::float16, int>(
cudaStream_t& stream,
paddle::Tensor* qkv_out,
paddle::Tensor* key_cache_out,
paddle::Tensor* value_cache_out,
const paddle::optional<paddle::Tensor>& q_norm_weight,
const paddle::optional<paddle::Tensor>& k_norm_weight,
const float rms_norm_eps);
paddle::Tensor* value_cache_out);
template void DecoderWriteCacheWithRoPEKernel<paddle::float16, paddle::float16>(
const AppendAttnMetaData& meta_data,
@@ -992,6 +729,7 @@ template void DecoderWriteCacheWithRoPEKernel<paddle::float16, paddle::float16>(
// kv_num_heads, head_dim] if GQA)
const paddle::Tensor& seq_lens,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& block_tables,
const paddle::optional<paddle::Tensor>& rotary_embs,
@@ -1008,7 +746,4 @@ template void DecoderWriteCacheWithRoPEKernel<paddle::float16, paddle::float16>(
cudaStream_t& stream,
paddle::Tensor* qkv_out,
paddle::Tensor* key_cache_out,
paddle::Tensor* value_cache_out,
const paddle::optional<paddle::Tensor>& q_norm_weight,
const paddle::optional<paddle::Tensor>& k_norm_weight,
const float rms_norm_eps);
paddle::Tensor* value_cache_out);

View File

@@ -23,6 +23,7 @@ void DecoderWriteCacheWithRoPEKernel(
// kv_num_heads, head_dim] if GQA)
const paddle::Tensor& seq_lens,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& block_tables,
const paddle::optional<paddle::Tensor>& rotary_embs,
@@ -39,6 +40,4 @@ void DecoderWriteCacheWithRoPEKernel(
cudaStream_t& stream,
paddle::Tensor* qkv_out,
paddle::Tensor* key_cache_out,
paddle::Tensor* value_cache_out,
const paddle::optional<paddle::Tensor>& q_norm_weight,
const paddle::optional<paddle::Tensor>& k_norm_weight, const float rms_norm_eps);
paddle::Tensor* value_cache_out);

View File

@@ -46,32 +46,38 @@ void EncoderWriteCacheWithRopeKernel(
cudaStream_t& stream,
paddle::Tensor* qkv_out,
paddle::Tensor* key_cache_out,
paddle::Tensor* value_cache_out,
const paddle::optional<paddle::Tensor>& q_norm_weight,
const paddle::optional<paddle::Tensor>& k_norm_weight,
const float rms_norm_eps) {
paddle::Tensor* value_cache_out) {
auto token_num = meta_data.token_nums;
auto num_heads = meta_data.q_num_heads;
auto kv_num_heads = meta_data.kv_num_heads;
auto head_dim = meta_data.head_dims;
bool is_scale_channel_wise = false;
int rotary_dim = head_dim;
if (cache_k_scale && cache_k_scale.get().dims()[0] == head_dim * kv_num_heads) {
is_scale_channel_wise = true;
}
if (rotary_embs){
rotary_dim = rotary_embs.get().dims()[rotary_embs.get().dims().size()-1] * 2;
if(rotary_dim < head_dim){
if (!use_neox_style || q_norm_weight || k_norm_weight || num_heads == kv_num_heads || is_scale_channel_wise){
PADDLE_THROW(phi::errors::Fatal(
"partial_rotary_factor < 1.0 only supports use_neox_rotary_style=True, q_norm_weight/k_norm_weight) is None, GQA and is_scale_channel_wise=false."));
}
}
}
if (q_norm_weight && k_norm_weight) {
if (num_heads != kv_num_heads && !is_scale_channel_wise && !use_neox_style) {
gqa_rotary_qk_norm_variable(
if (num_heads == kv_num_heads) {
rotary_qk_variable(
qkv_out->data<T>(),
qkv.data<QKV_TYPE>(),
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? qkv_biases.get().data<T>() : nullptr,
rotary_embs.get().data<float>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens_encoder.data<int>(),
seq_lens_decoder.data<int>(),
token_num,
num_heads,
max_seq_len,
rotary_embs.get().dims()[2],
head_dim,
stream,
use_neox_style,
rope_3d);
} else {
if (!is_scale_channel_wise) {
gqa_rotary_qk_variable(
qkv_out->data<T>(),
qkv.data<QKV_TYPE>(),
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
@@ -89,81 +95,31 @@ void EncoderWriteCacheWithRopeKernel(
head_dim,
stream,
use_neox_style,
rope_3d,
q_norm_weight ? q_norm_weight.get().data<float>() : nullptr,
k_norm_weight ? k_norm_weight.get().data<float>() : nullptr,
rms_norm_eps);
rope_3d);
} else {
PD_THROW(
"gqa_rotary_qk_norm_variable only support gqa mode. channel wise scale and neox style are not supported");
gqa_rotary_qk_quant_variable(
qkv_out->data<T>(),
qkv.data<QKV_TYPE>(),
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? qkv_biases.get().data<T>() : nullptr,
cache_k_scale ? cache_k_scale.get().data<T>() : nullptr,
cache_v_scale ? cache_v_scale.get().data<T>() : nullptr,
rotary_embs.get().data<float>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens_encoder.data<int>(),
seq_lens_decoder.data<int>(),
token_num,
num_heads,
kv_num_heads,
max_seq_len,
rotary_embs.get().dims()[2],
head_dim,
stream,
use_neox_style,
rope_3d);
}
} else {
if (num_heads == kv_num_heads) {
rotary_qk_variable(
qkv_out->data<T>(),
qkv.data<QKV_TYPE>(),
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? qkv_biases.get().data<T>() : nullptr,
rotary_embs.get().data<float>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens_encoder.data<int>(),
seq_lens_decoder.data<int>(),
token_num,
num_heads,
max_seq_len,
rotary_embs.get().dims()[2],
head_dim,
stream,
use_neox_style,
rope_3d);
} else {
if (!is_scale_channel_wise) {
gqa_rotary_qk_variable(
qkv_out->data<T>(),
qkv.data<QKV_TYPE>(),
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? qkv_biases.get().data<T>() : nullptr,
rotary_embs.get().data<float>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens_encoder.data<int>(),
seq_lens_decoder.data<int>(),
token_num,
num_heads,
kv_num_heads,
max_seq_len,
rope_3d ? rotary_embs.get().dims()[3] : rotary_embs.get().dims()[2],
head_dim,
rotary_dim,
stream,
use_neox_style,
rope_3d);
} else {
gqa_rotary_qk_quant_variable(
qkv_out->data<T>(),
qkv.data<QKV_TYPE>(),
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? qkv_biases.get().data<T>() : nullptr,
cache_k_scale ? cache_k_scale.get().data<T>() : nullptr,
cache_v_scale ? cache_v_scale.get().data<T>() : nullptr,
rotary_embs.get().data<float>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens_encoder.data<int>(),
seq_lens_decoder.data<int>(),
token_num,
num_heads,
kv_num_heads,
max_seq_len,
rotary_embs.get().dims()[2],
head_dim,
stream,
use_neox_style,
rope_3d);
}
}
}
const uint32_t block_size = meta_data.block_size;
if (cache_quant_type_str == "none") {
@@ -178,7 +134,7 @@ void EncoderWriteCacheWithRopeKernel(
stream,
key_cache_out,
value_cache_out);
} else if (cache_quant_type_str == "cache_int8" or cache_quant_type_str == "cache_fp8" or cache_quant_type_str == "block_wise_fp8") {
} else if (cache_quant_type_str == "cache_int8" or cache_quant_type_str == "cache_fp8") {
DISPATCH_HEAD_DIM(
head_dim, HEAD_DIM, {DISPATCH_BLOCK_SIZE(block_size, BLOCK_SIZE, {
CascadeAppendWriteCacheKVC8QKV<T, HEAD_DIM, BLOCK_SIZE>(
@@ -198,7 +154,7 @@ void EncoderWriteCacheWithRopeKernel(
num_blocks,
max_seq_len,
is_scale_channel_wise,
cache_quant_type_str,
cache_quant_type_str == "cache_fp8",
stream,
key_cache_out,
value_cache_out);

View File

@@ -11,17 +11,14 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "cute/tensor.hpp"
#include "helper.h"
#include "paddle/extension.h"
#ifndef PADDLE_WITH_CUSTOM_DEVICE_METAX_GPU
#include "paddle/phi/core/memory/memcpy.h"
#endif
#include "utils.cuh"
template <int THREADBLOCK_SIZE>
__global__ void
GetMaxLenKernel(const int *seq_lens_decoder, const int *seq_lens_this_time,
GetMaxLenKernel(const int *seq_lens, const int *seq_lens_this_time,
const int *seq_lens_encoder,
const int *seq_lens_this_time_merged,
const int *seq_lens_encoder_merged, const int *seq_mapping,
@@ -39,27 +36,41 @@ GetMaxLenKernel(const int *seq_lens_decoder, const int *seq_lens_this_time,
int max_just_dec_merged_len_this_time_this_thread = 0;
int max_system_len_this_thread = 0;
int max_dec_len_without_system_this_thread = 0;
int max_len_kv_this_thread = 0;
for (int i = tid; i < batch_size; i += blockDim.x) {
const int seq_len_this_time = seq_lens_this_time[i];
const int seq_len_decoder = seq_lens_decoder[i];
max_len_this_time_this_thread =
max(seq_len_this_time, max_len_this_time_this_thread);
max_len_encoder_this_thread =
max(seq_lens_encoder[i], max_len_encoder_this_thread);
max_len_decoder_this_thread = max(seq_len_decoder, max_len_decoder_this_thread);
max_len_decoder_this_thread = max(seq_lens[i], max_len_decoder_this_thread);
if (seq_len_this_time <= 0)
continue;
const int max_just_dec_len_now = seq_lens_encoder[i] > 0 ? 0 : seq_len_decoder;
const int max_just_dec_len_now = seq_lens_encoder[i] > 0 ? 0 : seq_lens[i];
max_len_this_thread =
max(seq_len_decoder + seq_len_this_time, max_len_this_thread);
max(seq_lens[i] + seq_len_this_time, max_len_this_thread);
max_just_dec_len_this_thread =
max(max_just_dec_len_this_thread, max_just_dec_len_now);
if (seq_len_decoder == 0)
continue;
max_len_kv_this_thread =
max(seq_len_this_time + seq_len_decoder, max_len_kv_this_thread);
if (system_lens) {
const int real_bid = seq_mapping[i];
const int system_len_now = system_lens[real_bid];
max_system_len_this_thread =
max(max_system_len_this_thread, system_len_now);
max_dec_len_without_system_this_thread =
max(max_dec_len_without_system_this_thread,
max_just_dec_len_now - system_len_now);
}
}
if (system_lens) {
for (int i = tid; i < batch_size; i += blockDim.x) {
const int ori_seq_len_this_time = seq_lens_this_time_merged[i];
if (ori_seq_len_this_time <= 0)
continue;
const int max_just_dec_merged_len_this_time_now =
seq_lens_encoder_merged[i] > 0 ? 0 : ori_seq_len_this_time;
max_just_dec_merged_len_this_time_this_thread =
max(max_just_dec_merged_len_this_time_this_thread,
max_just_dec_merged_len_this_time_now);
}
}
int total_max_len_this_time =
BlockReduce(temp_storage)
@@ -82,8 +93,6 @@ GetMaxLenKernel(const int *seq_lens_decoder, const int *seq_lens_this_time,
int total_dec_len_without_system =
BlockReduce(temp_storage)
.Reduce(max_dec_len_without_system_this_thread, MaxOp<int>());
int total_max_len_kv =
BlockReduce(temp_storage).Reduce(max_len_kv_this_thread, MaxOp<int>());
if (tid == 0) {
max_lens[0] = total_max_len_this_time;
max_lens[1] = total_max_len_encoder;
@@ -93,7 +102,6 @@ GetMaxLenKernel(const int *seq_lens_decoder, const int *seq_lens_this_time,
max_lens[5] = total_just_dec_merged;
max_lens[6] = total_system_len;
max_lens[7] = total_dec_len_without_system;
max_lens[8] = total_max_len_kv;
}
}
@@ -108,146 +116,29 @@ void GetMaxLen(const paddle::Tensor &seq_lens_tensor,
max_len_tensor.data<int>(), batch_size);
}
template <uint32_t config_size>
__global__ void search_chunk_size_for_mla(
const int *__restrict__ seq_lens_q,
const int *__restrict__ seq_lens_encoder,
const int *__restrict__ seq_lens_decoder,
int *__restrict__ num_blocks_x,
int *__restrict__ res_chunk_size,
const int bsz,
const int set_chunk_size,
const int block_size,
const int sm_cout) {
const uint32_t conf_id = threadIdx.x;
int gridx = 0;
if (set_chunk_size > 0 && conf_id == 0) {
for (uint32_t bid = 0; bid < bsz; bid++) {
int seq_len = seq_lens_q[bid];
int seq_len_encoder = seq_lens_encoder[bid];
int seq_len_decoder = seq_lens_decoder[bid] + seq_len;
if (seq_len == 0 || seq_len_encoder > 0) continue;
int loop_times;
loop_times = cute::ceil_div(seq_len_decoder, set_chunk_size);
gridx += loop_times;
}
*num_blocks_x = gridx;
*res_chunk_size = set_chunk_size;
} else if (conf_id < config_size) {
__shared__ int gridx_shared[config_size];
// chunk_size is a multiple of 64
const int chunk_size = block_size << conf_id;
for (uint32_t bid = 0; bid < bsz; bid++) {
int seq_len = seq_lens_q[bid];
int seq_len_encoder = seq_lens_encoder[bid];
int seq_len_decoder = seq_lens_decoder[bid] + seq_len;
if (seq_len == 0 || seq_len_encoder > 0) continue;
int loop_times;
loop_times = cute::ceil_div(seq_len_decoder, chunk_size);
gridx += loop_times;
}
gridx_shared[conf_id] = gridx;
__syncthreads();
if (threadIdx.x == 0) {
uint32_t res_id = 0;
uint32_t max_last_wave_block = 0;
for (uint32_t i = 1; i < config_size; i++) {
uint32_t last_wave_block = gridx_shared[i] % sm_cout;
if (last_wave_block >= max_last_wave_block) {
res_id = i;
max_last_wave_block = last_wave_block;
}
}
*num_blocks_x = gridx_shared[res_id];
*res_chunk_size = block_size << res_id;
}
}
}
__global__ void split_block_for_mla(const int *__restrict__ seq_lens_q,
const int *__restrict__ seq_lens_encoder,
const int *__restrict__ seq_lens_decoder,
int *__restrict__ batch_ids,
int *__restrict__ tile_ids_per_batch,
const int bsz,
const int chunk_size) {
if (threadIdx.x == 0) {
int index = 0;
for (uint32_t bid = 0; bid < bsz; bid++) {
int seq_len = seq_lens_q[bid];
int seq_len_encoder = seq_lens_encoder[bid];
int seq_len_decoder = seq_lens_decoder[bid] + seq_len;
if (seq_len == 0) continue;
int loop_times;
loop_times = cute::ceil_div(seq_len_decoder, chunk_size);
if (seq_len_encoder > 0) {
loop_times = 0;
}
for (uint32_t tile_id = 0; tile_id < loop_times; tile_id++) {
batch_ids[index] = bid;
tile_ids_per_batch[index++] = tile_id;
}
}
}
}
__global__ void split_q_block(const int *__restrict__ seq_lens_q,
const int *__restrict__ seq_lens_encoder,
int *__restrict__ batch_ids,
int *__restrict__ tile_ids_per_batch,
int *__restrict__ num_blocks_x,
const int bsz,
int *__restrict__ num_blocks_x, const int bsz,
const int num_rows_per_block,
const int group_size) {
// one block one warp
const int lane_id = threadIdx.x % warpSize;
int prev_offset = 0;
// loop on warp tile[base, base+32)
for (int base = 0; base < bsz; base += warpSize) {
const int bid = base + lane_id;
// calculate loop_times for bid
int loop_times = 0;
if (bid < bsz) {
if (threadIdx.x == 0) {
int gridx = 0;
int index = 0;
for (uint32_t bid = 0; bid < bsz; bid++) {
int seq_len = seq_lens_q[bid];
if (seq_lens_encoder && seq_lens_encoder[bid] > 0) {
seq_len = 0;
}
loop_times = div_up(seq_len * group_size, num_rows_per_block);
}
// prefix sum for each lane, get the start offset in this tile
// inclusive scan
int x = loop_times;
for (int offset = 1; offset < warpSize; offset <<= 1) {
int y = __shfl_up_sync(0xffffffff, x, offset);
if (lane_id >= offset) x += y;
}
// exclusive prefix sum
int bid_offset = x - loop_times;
int tile_sum = __shfl_sync(0xffffffff, x, warpSize - 1);
// write batch_ids and tile_ids_per_batch
if (bid < bsz && loop_times > 0) {
int write_base = prev_offset + bid_offset;
for (int t = 0; t < loop_times; ++t) {
int pos = write_base + t;
batch_ids[pos] = bid;
tile_ids_per_batch[pos] = t;
const int loop_times = div_up(seq_len * group_size, num_rows_per_block);
for (uint32_t tile_id = 0; tile_id < loop_times; tile_id++) {
batch_ids[index] = bid;
tile_ids_per_batch[index++] = tile_id;
}
gridx += loop_times;
}
// for next warp tile
prev_offset += tile_sum;
}
if (threadIdx.x == 0) {
*num_blocks_x = prev_offset;
*num_blocks_x = gridx;
}
}
@@ -277,22 +168,37 @@ __global__ void split_kv_block(const int *__restrict__ seq_lens_decoder,
}
}
void GetBlockShapeAndSplitKVBlock(
template <int THREADBLOCK_SIZE>
__global__ void
get_max_len_kv_ernel(int *max_seq_lens_out, const int *seq_lens_this_time,
const int *seq_lens_decoder, const int batch_size) {
const int tid = threadIdx.x;
typedef cub::BlockReduce<int, THREADBLOCK_SIZE> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
int max_len_this_thread = 0;
for (int i = tid; i < batch_size; i += blockDim.x) {
if (seq_lens_decoder[i] == 0)
continue;
max_len_this_thread =
max(seq_lens_this_time[i] + seq_lens_decoder[i], max_len_this_thread);
}
int total =
BlockReduce(temp_storage).Reduce(max_len_this_thread, MaxOp<int>());
if (tid == 0) {
*max_seq_lens_out = total;
}
}
std::vector<paddle::Tensor> GetBlockShapeAndSplitKVBlock(
const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &seq_lens_this_time,
paddle::Tensor &decoder_batch_ids, // Inplace
paddle::Tensor &decoder_tile_ids_per_batch, // Inplace
paddle::Tensor &decoder_num_blocks_cpu, // Inplace, Pinned Memory
paddle::Tensor &decoder_num_blocks_device, // Inplace
paddle::Tensor &decoder_chunk_size_device, // Inplace
paddle::Tensor &max_len_tensor_cpu, // Inplace, CPU
paddle::Tensor &encoder_batch_ids, // Inplace
paddle::Tensor &encoder_tile_ids_per_batch, // Inplace
paddle::Tensor &encoder_num_blocks_x_cpu, // Inplace, CPU
paddle::Tensor &kv_batch_ids, // Inplace
paddle::Tensor &kv_tile_ids_per_batch, // Inplace
paddle::Tensor &kv_num_blocks_x_cpu, // Inplace, CPU
paddle::Tensor &decoder_num_blocks_x_cpu, // Inplace, Pinned Memory
paddle::Tensor &max_len_tensor_cpu, // Inplace, Pinned Memory
const int encoder_block_shape_q,
const int decoder_block_shape_q,
const int group_size,
@@ -316,126 +222,32 @@ void GetBlockShapeAndSplitKVBlock(
int max_just_dec_merged_len_this_time = max_len_cpu_ptr[5];
int max_system_len = max_len_cpu_ptr[6];
int max_just_dec_len_without_system = max_len_cpu_ptr[7];
int max_kv_len_this_time = max_len_cpu_ptr[8];
// decoder
if (max_dec_len_this_time > 0) {
paddle::Tensor encoder_batch_ids;
paddle::Tensor encoder_tile_ids_per_batch;
paddle::Tensor encoder_num_blocks_x_cpu; /*cpu*/
paddle::Tensor kv_batch_ids;
paddle::Tensor kv_tile_ids_per_batch;
paddle::Tensor kv_num_blocks_x_cpu; /*cpu*/
paddle::Tensor max_len_kv_cpu; /*cpu*/
const bool mla_backend = checkAttentionBackend();
if (mla_backend && group_size <= 64) {
const int set_chunk_size = get_mla_dec_chunk_size(bsz);
auto max_len_kv =
GetEmptyTensor({1}, paddle::DataType::INT32, seq_lens_decoder.place());
get_max_len_kv_ernel<128><<<1, 128, 0, stream>>>(
max_len_kv.data<int>(), seq_lens_this_time.data<int>(),
seq_lens_decoder.data<int>(), bsz);
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(
decoder_chunk_size_device.data<int>(), 64, sizeof(int32_t), stream));
max_len_kv_cpu = max_len_kv.copy_to(paddle::CPUPlace(), false);
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(
decoder_num_blocks_device.data<int>(), 0, sizeof(int32_t), stream));
int device;
cudaGetDevice(&device);
int sm_cout;
cudaDeviceGetAttribute(&sm_cout, cudaDevAttrMultiProcessorCount, device);
constexpr int config_size =
12; // search space for chunk size:[64, 128, 256, ... 131072]
search_chunk_size_for_mla<config_size>
<<<1, 32, 0, stream>>>(seq_lens_this_time.data<int>(),
seq_lens_encoder.data<int>(),
seq_lens_decoder.data<int>(),
decoder_num_blocks_device.data<int>(),
decoder_chunk_size_device.data<int>(),
bsz,
set_chunk_size,
block_size,
sm_cout);
decoder_num_blocks_cpu.copy_(
decoder_num_blocks_device, decoder_num_blocks_cpu.place(), false);
auto decoder_chunk_size_cpu =
decoder_chunk_size_device.copy_to(paddle::CPUPlace(), false);
const int chunk_size = decoder_chunk_size_cpu.data<int>()[0];
// NOTE: (changwenbin) When using auto_chunk,
// decode_max_tile_size must take into account the maximum case, where * 1024 can cover 128K.
// const uint32_t decoder_batch_shape = seq_lens_decoder.dims()[0] * 1024;
const uint32_t decoder_max_tile_size_per_bs_q =
div_up((decoder_step_token_num * group_size), decoder_block_shape_q);
const uint32_t decoder_batch_shape =
bsz * 1024 * decoder_max_tile_size_per_bs_q;
PADDLE_ENFORCE_GPU_SUCCESS(
cudaMemsetAsync(decoder_batch_ids.data<int>(),
0,
decoder_batch_shape * sizeof(int32_t),
stream));
PADDLE_ENFORCE_GPU_SUCCESS(
cudaMemsetAsync(decoder_tile_ids_per_batch.data<int>(),
0,
decoder_batch_shape * sizeof(int32_t),
stream));
split_block_for_mla<<<1, 32, 0, stream>>>(
seq_lens_this_time.data<int>(),
seq_lens_encoder.data<int>(),
seq_lens_decoder.data<int>(),
decoder_batch_ids.data<int>(),
decoder_tile_ids_per_batch.data<int>(),
bsz,
chunk_size);
} else {
// Note:(changwenbin)In order to adapt to cudagraph, the maximum value
// should be taken here
const uint32_t decoder_max_tile_size_per_bs_q =
div_up((decoder_step_token_num * group_size), decoder_block_shape_q);
const uint32_t decoder_batch_shape =
bsz * 1024 * decoder_max_tile_size_per_bs_q;
PADDLE_ENFORCE_GPU_SUCCESS(
cudaMemsetAsync(decoder_batch_ids.data<int>(),
0,
decoder_batch_shape * sizeof(int32_t),
stream));
PADDLE_ENFORCE_GPU_SUCCESS(
cudaMemsetAsync(decoder_tile_ids_per_batch.data<int>(),
0,
decoder_batch_shape * sizeof(int32_t),
stream));
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(
decoder_num_blocks_device.data<int>(), 0, sizeof(int32_t), stream));
split_q_block<<<1, 32, 0, stream>>>(
seq_lens_this_time.data<int>(),
seq_lens_encoder.data<int>(),
decoder_batch_ids.data<int>(),
decoder_tile_ids_per_batch.data<int>(),
decoder_num_blocks_device.data<int>(),
bsz,
decoder_block_shape_q,
group_size);
decoder_num_blocks_cpu.copy_(
decoder_num_blocks_device, decoder_num_blocks_cpu.place(), false);
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(
decoder_chunk_size_device.data<int>(), 64, sizeof(int32_t), stream));
}
} else {
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(
decoder_chunk_size_device.data<int>(), 64, sizeof(int32_t), stream));
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(
decoder_num_blocks_device.data<int>(), 0, sizeof(int32_t), stream));
decoder_num_blocks_cpu.copy_(
decoder_num_blocks_device, decoder_num_blocks_cpu.place(), false);
}
// encoder
if (max_enc_len_this_time > 0) {
const uint32_t max_tile_size_per_bs_kv = div_up(max_enc_dec_len_this_time, block_size);
const uint32_t kv_batch_shape = bsz * max_tile_size_per_bs_kv;
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(kv_batch_ids.data<int>(), 0, kv_batch_shape * sizeof(int32_t), stream));
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(kv_tile_ids_per_batch.data<int>(), 0, kv_batch_shape * sizeof(int32_t), stream));
const uint32_t max_tile_size_per_bs_kv =
div_up(max_enc_dec_len_this_time, block_size);
kv_batch_ids =
GetEmptyTensor({bsz * max_tile_size_per_bs_kv}, paddle::DataType::INT32,
seq_lens_encoder.place());
kv_tile_ids_per_batch =
GetEmptyTensor({bsz * max_tile_size_per_bs_kv}, paddle::DataType::INT32,
seq_lens_encoder.place());
auto kv_num_blocks_x =
GetEmptyTensor({1}, paddle::DataType::INT32, seq_lens_encoder.place());
@@ -446,12 +258,16 @@ void GetBlockShapeAndSplitKVBlock(
kv_tile_ids_per_batch.data<int>(), kv_num_blocks_x.data<int>(), bsz,
block_size, block_size);
kv_num_blocks_x_cpu.copy_(kv_num_blocks_x, kv_num_blocks_x_cpu.place(), false);
// Clear buffer
const uint32_t encoder_max_tile_size_per_bs_q = div_up((max_enc_dec_len_this_time * group_size), encoder_block_shape_q);
const uint32_t encoder_batch_shape = bsz * encoder_max_tile_size_per_bs_q;
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(encoder_batch_ids.data<int>(), 0, encoder_batch_shape * sizeof(int32_t), stream));
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(encoder_tile_ids_per_batch.data<int>(), 0, encoder_batch_shape * sizeof(int32_t), stream));
kv_num_blocks_x_cpu = kv_num_blocks_x.copy_to(paddle::CPUPlace(), false);
const uint32_t encoder_max_tile_size_per_bs_q =
div_up((max_enc_dec_len_this_time * group_size), encoder_block_shape_q);
encoder_batch_ids =
GetEmptyTensor({bsz * encoder_max_tile_size_per_bs_q},
paddle::DataType::INT32, seq_lens_encoder.place());
encoder_tile_ids_per_batch =
GetEmptyTensor({bsz * encoder_max_tile_size_per_bs_q},
paddle::DataType::INT32, seq_lens_encoder.place());
auto encoder_num_blocks_x =
GetEmptyTensor({1}, paddle::DataType::INT32, seq_lens_encoder.place());
split_q_block<<<1, 32, 0, stream>>>(seq_lens_encoder.data<int>(), nullptr,
@@ -459,35 +275,54 @@ void GetBlockShapeAndSplitKVBlock(
encoder_tile_ids_per_batch.data<int>(),
encoder_num_blocks_x.data<int>(), bsz,
encoder_block_shape_q, group_size);
encoder_num_blocks_x_cpu.copy_(encoder_num_blocks_x, encoder_num_blocks_x_cpu.place(), false);
encoder_num_blocks_x_cpu =
encoder_num_blocks_x.copy_to(paddle::CPUPlace(), false);
} else {
encoder_batch_ids =
GetEmptyTensor({0}, paddle::DataType::INT32, seq_lens_encoder.place());
encoder_tile_ids_per_batch =
GetEmptyTensor({0}, paddle::DataType::INT32, seq_lens_encoder.place());
encoder_num_blocks_x_cpu =
GetEmptyTensor({0}, paddle::DataType::INT32, paddle::CPUPlace());
kv_batch_ids =
GetEmptyTensor({0}, paddle::DataType::INT32, seq_lens_encoder.place());
kv_tile_ids_per_batch =
GetEmptyTensor({0}, paddle::DataType::INT32, seq_lens_encoder.place());
kv_num_blocks_x_cpu =
GetEmptyTensor({0}, paddle::DataType::INT32, seq_lens_encoder.place());
}
}
if (max_just_dec_len_this_time > 0) {
// Clear buffer
const uint32_t decoder_max_tile_size_per_bs_q = div_up((decoder_step_token_num * group_size), decoder_block_shape_q);
const uint32_t decoder_batch_shape = bsz * decoder_max_tile_size_per_bs_q;
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(decoder_batch_ids.data<int>(), 0, decoder_batch_shape * sizeof(int32_t), stream));
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(decoder_tile_ids_per_batch.data<int>(), 0, decoder_batch_shape * sizeof(int32_t), stream));
PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(decoder_num_blocks_x_cpu.data<int>(), 0, sizeof(int32_t), stream));
std::vector<std::vector<int64_t>> GetBlockShapeAndSplitKVBlockInferShape(
const std::vector<int64_t> &seq_lens_encoder,
const std::vector<int64_t> &seq_lens_decoder,
const std::vector<int64_t> &seq_lens_this_time,
const int encoder_block_shape_q,
const int decoder_block_shape_q,
const int group_size,
const int block_size,
const int decoder_step_token_num
) {
return {};
}
auto decoder_num_blocks_x =
GetEmptyTensor({1}, paddle::DataType::INT32, seq_lens_encoder.place());
split_q_block<<<1, 32, 0, stream>>>(
seq_lens_this_time.data<int>(),
seq_lens_encoder.data<int>(),
decoder_batch_ids.data<int>(),
decoder_tile_ids_per_batch.data<int>(),
decoder_num_blocks_x.data<int>(),
bsz,
decoder_block_shape_q,
group_size);
decoder_num_blocks_x_cpu.copy_(decoder_num_blocks_x, decoder_num_blocks_x_cpu.place(), false);
}
std::vector<paddle::DataType> GetBlockShapeAndSplitKVBlockInferDtype(
const paddle::DataType &seq_lens_encoder,
const paddle::DataType &seq_lens_decoder,
const paddle::DataType &seq_lens_this_time,
const int encoder_block_shape_q,
const int decoder_block_shape_q,
const int group_size,
const int block_size,
const int decoder_step_token_num
) {
return {};
return {
encoder_batch_ids,
encoder_tile_ids_per_batch,
encoder_num_blocks_x_cpu, /*cpu*/
kv_batch_ids,
kv_tile_ids_per_batch,
kv_num_blocks_x_cpu, /*cpu*/
max_len_kv_cpu, /*cpu*/
};
}
PD_BUILD_STATIC_OP(get_block_shape_and_split_kv_block)
@@ -497,19 +332,17 @@ PD_BUILD_STATIC_OP(get_block_shape_and_split_kv_block)
"seq_lens_this_time",
"decoder_batch_ids",
"decoder_tile_ids_per_batch",
"decoder_num_blocks_cpu",
"decoder_num_blocks_device",
"decoder_chunk_size_device",
"max_len_tensor_cpu",
"encoder_batch_ids",
"encoder_tile_ids_per_batch",
"encoder_num_blocks_x_cpu",
"kv_batch_ids",
"kv_tile_ids_per_batch",
"kv_num_blocks_x_cpu",
"decoder_num_blocks_x_cpu",
"max_len_tensor_cpu"
})
.Outputs({
paddle::Optional("encoder_batch_ids"),
paddle::Optional("encoder_tile_ids_per_batch"),
paddle::Optional("encoder_num_blocks_x_cpu"),
paddle::Optional("kv_batch_ids"),
paddle::Optional("kv_tile_ids_per_batch"),
paddle::Optional("kv_num_blocks_x_cpu"),
"max_len_kv_cpu"
})
.Attrs({
"encoder_block_shape_q: int",
@@ -518,6 +351,4 @@ PD_BUILD_STATIC_OP(get_block_shape_and_split_kv_block)
"block_size: int",
"decoder_step_token_num: int"
})
.SetKernelFn(PD_KERNEL(GetBlockShapeAndSplitKVBlock))
.SetInferShapeFn(PD_INFER_SHAPE(GetBlockShapeAndSplitKVBlockInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(GetBlockShapeAndSplitKVBlockInferDtype));
.SetKernelFn(PD_KERNEL(GetBlockShapeAndSplitKVBlock));

View File

@@ -37,8 +37,7 @@ __global__ void GQAVariableLengthRotarySplitKernel(
const int q_num_head,
const int kv_num_head,
const int seq_len,
const int last_dim,
const bool rope_3d) {
const int last_dim) {
using LoadT = AlignedVector<T, VecSize>;
constexpr int HalfVecSize = VecSize / 2;
using LoadEmbT = AlignedVector<float, HalfVecSize>;
@@ -63,7 +62,6 @@ __global__ void GQAVariableLengthRotarySplitKernel(
const int kv_write_idx = cu_seqlens_k[ori_bi] + ori_seq_id;
const int64_t emb_idx = ori_seq_id * half_lastdim + h_bias / 2;
int64_t new_emb_idx = rope_3d ? emb_idx + ori_bi * last_dim * seq_len : emb_idx;
const int64_t base_idx =
token_idx * (q_num_head + 2 * kv_num_head) * last_dim + hi * last_dim +
h_bias;
@@ -82,8 +80,8 @@ __global__ void GQAVariableLengthRotarySplitKernel(
Load<T, VecSize>(&qkv[base_idx], &src_vec);
// do rope
if (hi < q_num_head + kv_num_head) {
Load<float, HalfVecSize>(&cos_emb[new_emb_idx], &cos_emb_vec);
Load<float, HalfVecSize>(&sin_emb[new_emb_idx], &sin_emb_vec);
Load<float, HalfVecSize>(&cos_emb[emb_idx], &cos_emb_vec);
Load<float, HalfVecSize>(&sin_emb[emb_idx], &sin_emb_vec);
#pragma unroll
for (int i = 0; i < HalfVecSize; i++) {
const float input_left = static_cast<float>(src_vec[2 * i]);
@@ -120,7 +118,6 @@ void gqa_rotary_qk_split_variable(
const int seq_len,
const int input_output_len,
const int dim_head,
const bool rope_3d,
const cudaStream_t &stream) {
int64_t elem_nums = token_num * (num_heads + 2 * kv_num_heads) * dim_head;
constexpr int PackSize = 16 / sizeof(T);
@@ -149,8 +146,7 @@ void gqa_rotary_qk_split_variable(
num_heads,
kv_num_heads,
seq_len,
dim_head,
rope_3d);
dim_head);
}
template <typename T,
@@ -217,7 +213,7 @@ __global__ void append_cache_kv_c16(
// load k_smem 64 rows 128 cols
for (int fz = 0; fz < 4; fz++) { // 4 rows pre warp once, 16 rows all 4 warps once, need 4 iter
for (int fy = 0; fy < 2; fy++) { // 8 * 128b = 64 * bf16 once, need 2 iter
for (int fy = 0; fy < 2; fy++) { // 8 * 128b = 64 * bf16 noce, need 2 iter
k_smem.load_128b_async<SharedMemFillMode::kNoFill>(
k_smem_offset_w, cur_cache_k + k_read_idx, end_idx > 0);
k_smem_offset_w =
@@ -235,7 +231,7 @@ __global__ void append_cache_kv_c16(
// deal k_smem 64 rows 128 cols
for (int fz = 0; fz < 1; fz++) { // 16 rows pre warp once, 64 rows all 4 warps once, need 1 iter
uint32_t row_idx = wid * 16 + tid / 4;
for (int fy = 0; fy < 8; fy++) { // 2 * 128b = 16 * bf16 once, need 8 iter
for (int fy = 0; fy < 8; fy++) { // 2 * 128b = 16 * bf16 noce, need 8 iter
uint32_t col_idx = fy * 16 + tid % 4 * 2;
k_smem.ldmatrix_m8n8x4(k_smem_offset_r, kv_frag);
// layout
@@ -278,7 +274,7 @@ __global__ void append_cache_kv_c16(
// load v_smem 64 rows 128 cols
for (int fz = 0; fz < 4; fz++) { // // 4 rows pre warp once, 16 rows all 4 warps once, need 4 iter
for (int fy = 0; fy < 2; fy++) { // 8 * 128b = 64 * bf16 once, need 2 iter
for (int fy = 0; fy < 2; fy++) { // 8 * 128b = 64 * bf16 noce, need 2 iter
v_smem.load_128b_async<SharedMemFillMode::kNoFill>(
v_smem_offset_w, cur_cache_v + v_read_idx, end_idx > 0);
v_smem_offset_w =
@@ -296,7 +292,7 @@ __global__ void append_cache_kv_c16(
// deal v_smem 64 rows 128 cols
for (int fz = 0; fz < 1; fz++) { // 16 rows pre warp once, 64 rows all 4 warps once, need 1 iter
uint32_t row_idx = wid * 16 + tid / 4;
for (int fy = 0; fy < 8; fy++) { // 2 * 128b = 16 * bf16 once, need 8 iter
for (int fy = 0; fy < 8; fy++) { // 2 * 128b = 16 * bf16 noce, need 8 iter
uint32_t col_idx = fy * 16 + tid % 4 * 2;
v_smem.ldmatrix_m8n8x4(v_smem_offset_r, kv_frag);
// layout
@@ -400,7 +396,7 @@ __global__ void append_cache_kv_c8(
// load v_smem 64 rows, 128 cols
for (int fz = 0; fz < 4; fz++) { // 4 rows pre warp once, 16 rows all 4 warps once, need 4 iter
for (int fy = 0; fy < 1; fy++) { // 8 * 128b = 128 * uint8 once, need 1 iter
for (int fy = 0; fy < 1; fy++) { // 8 * 128b = 128 * uint8 noce, need 1 iter
k_smem.load_128b_async<SharedMemFillMode::kNoFill>(
k_smem_offset_w, cur_cache_k + k_read_idx, end_idx > 0);
k_smem_offset_w =
@@ -418,7 +414,7 @@ __global__ void append_cache_kv_c8(
// deal k_smem 64 rows, 128 cols
for (int fz = 0; fz < 1; fz++) { // 16 rows pre warp once, 64 rows all 4 warps once, need 1 iter
uint32_t row_idx = wid * 16 + tid / 4;
for (int fy = 0; fy < 4; fy++) { // 2 * 128b = 32 * uint8 once, need 4 iter
for (int fy = 0; fy < 4; fy++) { // 2 * 128b = 32 * uint8 noce, need 4 iter
uint32_t col_idx = fy * 32 + tid % 4 * 2;
k_smem.ldmatrix_m8n8x4(k_smem_offset_r, k_frag);
// layout
@@ -466,7 +462,7 @@ __global__ void append_cache_kv_c8(
tid % 4 * num_elems_per_128b<CacheT>();
// load v_smem 128 rows 64 cols
for (int fy = 0; fy < 4; fy++) { // 8 rows pre warp once, 32 rows all 4 warps once, need 4 iter
for (int fz = 0; fz < 1; fz++) { // 4 * 128b = 64 * uint8 once, need 1 iter
for (int fz = 0; fz < 1; fz++) { // 4 * 128b = 64 * uint8 noce, need 1 iter
v_smem.load_128b_async<SharedMemFillMode::kNoFill>(
v_smem_offset_w, cur_cache_v + v_read_idx, end_idx > 0);
v_smem_offset_w =
@@ -485,7 +481,7 @@ __global__ void append_cache_kv_c8(
// deal v_smem 128 rows 64 cols
for (int fy = 0; fy < 2; fy++) { // 16 rows pre warp once, 64 rows all 4 warps once, need 2 iter
uint32_t dim_idx = fy * NUM_WARPS * 16 + wid * 16 + tid / 4;
for (int fz = 0; fz < 2; fz++) { // 2 * 128b = 32 * uint8 once, need 2 iter
for (int fz = 0; fz < 2; fz++) { // 2 * 128b = 32 * uint8 noce, need 2 iter
uint32_t kv_idx = fz * 32 + tid % 4 * 2;
v_smem.ldmatrix_m8n8x4(v_smem_offset_r, v_frag);
// layout
@@ -614,7 +610,7 @@ __global__ void append_cache_kv_c4(
// load k_smem 64 rows 128 cols
for (int fz = 0; fz < 2; fz++) { // 4 rows pre warp once, 16 rows all 4 warps once, need 4 iter
for (int fy = 0; fy < 1; fy++) { // 4 * 128b = 128 * int4 once, need 1 iter
for (int fy = 0; fy < 1; fy++) { // 4 * 128b = 128 * int4 noce, need 1 iter
k_smem.load_128b_async<SharedMemFillMode::kNoFill>(
k_smem_offset_w, cur_cache_k + k_read_idx, end_idx > 0);
k_smem_offset_w =
@@ -632,7 +628,7 @@ __global__ void append_cache_kv_c4(
// deal k_smem 64 rows 128 cols
for (int fz = 0; fz < 1; fz++) { // 16 rows pre warp once, 64 rows all 4 warps once, need 1 iter
uint32_t row_idx = wid * 16 + tid / 4;
for (int fy = 0; fy < 2; fy++) { // 2 * 128b = 64 * int4 once, need 2 iter
for (int fy = 0; fy < 2; fy++) { // 2 * 128b = 64 * int4 noce, need 2 iter
uint32_t col_idx = fy * 64 + tid % 4 * 2;
k_smem.ldmatrix_m8n8x4(k_smem_offset_r, k_frag);
@@ -685,7 +681,7 @@ __global__ void append_cache_kv_c4(
tid % 2 * num_elems_per_128b<CacheT>();
// load v_smem 128 rows 64 rows
for (int fy = 0; fy < 2; fy++) { // 16 rows pre warp once, 64 rows all 4 warps once, need 2 iter
for (int fz = 0; fz < 1; fz++) { // 2 * 128b = 64 * int4 once, need 1 iter
for (int fz = 0; fz < 1; fz++) { // 2 * 128b = 64 * int4 noce, need 1 iter
v_smem.load_128b_async<SharedMemFillMode::kNoFill>(
v_smem_offset_w, cur_cache_v + v_read_idx, end_idx > 0);
v_smem_offset_w =
@@ -704,7 +700,7 @@ __global__ void append_cache_kv_c4(
// deal v_smem 128 rows 64 cols
for (int fy = 0; fy < 2; fy++) { // 16 rows pre warp once, 64 rows all 4 warps once, need 2 iter
uint32_t dim_idx = fy * NUM_WARPS * 16 + wid * 16 + tid / 4;
for (int fz = 0; fz < 1; fz++) { // 2 * 128b = 64 * int4 once, need 1 iter
for (int fz = 0; fz < 1; fz++) { // 2 * 128b = 64 * int4 noce, need 1 iter
uint32_t kv_idx = fz * 64 + tid % 4 * 2;
v_smem.ldmatrix_m8n8x4(v_smem_offset_r, v_frag);
// layout
@@ -894,8 +890,7 @@ std::vector<paddle::Tensor> GQARopeWriteCacheKernel(
const paddle::optional<paddle::Tensor>& kv_signal_data,
const int kv_token_num,
const int max_seq_len,
const std::string& cache_quant_type,
const bool rope_3d) {
const std::string& cache_quant_type) {
typedef PDTraits<paddle::DataType::BFLOAT16> traits_;
typedef typename traits_::DataType DataType_;
typedef typename traits_::data_t data_t;
@@ -958,9 +953,8 @@ std::vector<paddle::Tensor> GQARopeWriteCacheKernel(
num_heads,
kv_num_heads,
max_seq_len,
rope_3d ? rotary_embs.dims()[3] : rotary_embs.dims()[2],
rotary_embs.dims()[2],
head_dim,
rope_3d,
stream);
if (token_num < kv_token_num) {
@@ -1000,7 +994,7 @@ std::vector<paddle::Tensor> GQARopeWriteCacheKernel(
stream,
const_cast<paddle::Tensor*>(&key_cache),
const_cast<paddle::Tensor*>(&value_cache));
} else if (cache_quant_type == "cache_int8" || cache_quant_type == "cache_fp8" || cache_quant_type == "block_wise_fp8") {
} else if (cache_quant_type == "cache_int8" || cache_quant_type == "cache_fp8") {
CascadeAppendWriteCacheKVC8QKV<data_t, 128, 64>(
meta_data,
*const_cast<paddle::Tensor*>(&key_cache),
@@ -1018,7 +1012,7 @@ std::vector<paddle::Tensor> GQARopeWriteCacheKernel(
kv_num_blocks_data,
max_seq_len,
false, // is_scale_channel_wise
cache_quant_type,
cache_quant_type == "cache_fp8", // is_fp8
stream,
const_cast<paddle::Tensor*>(&key_cache),
const_cast<paddle::Tensor*>(&value_cache));

View File

@@ -15,7 +15,6 @@
#include <cuda_runtime.h>
#include <stdint.h>
#include <cooperative_groups/memcpy_async.h>
enum class SharedMemFillMode { kFillZero, kNoFill };
@@ -43,35 +42,18 @@ __device__ __forceinline__ void ldmatrix_m8n8x4_trans_impl(uint32_t* R,
}
__device__ __forceinline__ void commit_group() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE_METAX_GPU
{}
#else
asm volatile("cp.async.commit_group;\n" ::);
#endif
}
template <size_t n>
__device__ __forceinline__ void wait_group() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE_METAX_GPU
cooperative_groups::wait(cooperative_groups::this_thread_block());
#else
asm volatile("cp.async.wait_group %0;\n" ::"n"(n));
#endif
}
template <PrefetchMode prefetch_mode, typename T>
__device__ __forceinline__ void load_128b(T* smem_ptr, const T* gmem_ptr) {
uint32_t smem_int_ptr =
static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
#ifdef PADDLE_WITH_CUSTOM_DEVICE_METAX_GPU
if constexpr (prefetch_mode == PrefetchMode::kPrefetch) {
memset(__cvta_shared_to_generic(smem_int_ptr), 0, 16);
memcpy(__cvta_shared_to_generic(smem_int_ptr), (void *)gmem_ptr, 16);
} else {
memset(__cvta_shared_to_generic(smem_int_ptr), 0, 16);
memcpy(__cvta_shared_to_generic(smem_int_ptr), (void *)gmem_ptr, 16);
}
#else
if constexpr (prefetch_mode == PrefetchMode::kPrefetch) {
asm volatile(
"cp.async.cg.shared.global.L2::128B [%0], [%1], %2, %3;\n" ::"r"(
@@ -86,7 +68,6 @@ __device__ __forceinline__ void load_128b(T* smem_ptr, const T* gmem_ptr) {
"n"(16),
"r"(16));
}
#endif
}
template <PrefetchMode prefetch_mode, SharedMemFillMode fill_mode, typename T>
@@ -95,28 +76,6 @@ __device__ __forceinline__ void pred_load_128b(T* smem_ptr,
bool predicate) {
uint32_t smem_int_ptr =
static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
#ifdef PADDLE_WITH_CUSTOM_DEVICE_METAX_GPU
if constexpr (fill_mode == SharedMemFillMode::kFillZero) {
int src_in_bytes = predicate ? 16 : 0;
if constexpr (prefetch_mode == PrefetchMode::kPrefetch) {
memset(__cvta_shared_to_generic(smem_int_ptr), 0, 16);
memcpy(__cvta_shared_to_generic(smem_int_ptr), (void *)gmem_ptr, src_in_bytes);
} else {
memset(__cvta_shared_to_generic(smem_int_ptr), 0, 16);
memcpy(__cvta_shared_to_generic(smem_int_ptr), (void *)gmem_ptr, src_in_bytes);
}
} else {
if constexpr (prefetch_mode == PrefetchMode::kPrefetch) {
if (predicate) {
memcpy(__cvta_shared_to_generic(smem_int_ptr), (void *)gmem_ptr, 16);
}
} else {
if (predicate) {
memcpy(__cvta_shared_to_generic(smem_int_ptr), (void *)gmem_ptr, 16);
}
}
}
#else
if constexpr (fill_mode == SharedMemFillMode::kFillZero) {
int src_in_bytes = predicate ? 16 : 0;
if constexpr (prefetch_mode == PrefetchMode::kPrefetch) {
@@ -156,7 +115,6 @@ __device__ __forceinline__ void pred_load_128b(T* smem_ptr,
"n"(16));
}
}
#endif
}
template <PrefetchMode prefetch_mode, SharedMemFillMode fill_mode, typename T>
@@ -165,17 +123,6 @@ __device__ __forceinline__ void pred_load_64b(T* smem_ptr,
bool predicate) {
uint32_t smem_int_ptr =
static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
#ifdef PADDLE_WITH_CUSTOM_DEVICE_METAX_GPU
if constexpr (fill_mode == SharedMemFillMode::kFillZero) {
int src_in_bytes = predicate ? 8 : 0;
memset(__cvta_shared_to_generic(smem_int_ptr), 0, 8);
memcpy(__cvta_shared_to_generic(smem_int_ptr), (void *)gmem_ptr, src_in_bytes);
} else {
if (predicate) {
memcpy(__cvta_shared_to_generic(smem_int_ptr), (void *)gmem_ptr, 8);
}
}
#else
if constexpr (fill_mode == SharedMemFillMode::kFillZero) {
int src_in_bytes = predicate ? 8 : 0;
asm volatile(
@@ -194,7 +141,6 @@ __device__ __forceinline__ void pred_load_64b(T* smem_ptr,
"l"(gmem_ptr),
"n"(8));
}
#endif
}
template <PrefetchMode prefetch_mode, SharedMemFillMode fill_mode, typename T>
@@ -203,17 +149,6 @@ __device__ __forceinline__ void pred_load_32b(T* smem_ptr,
bool predicate) {
uint32_t smem_int_ptr =
static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
#ifdef PADDLE_WITH_CUSTOM_DEVICE_METAX_GPU
if constexpr (fill_mode == SharedMemFillMode::kFillZero) {
int src_in_bytes = predicate ? 4 : 0;
memset(__cvta_shared_to_generic(smem_int_ptr), 0, 4);
memcpy(__cvta_shared_to_generic(smem_int_ptr), (void *)gmem_ptr, src_in_bytes);
} else {
if (predicate) {
memcpy(__cvta_shared_to_generic(smem_int_ptr), (void *)gmem_ptr, 4);
}
}
#else
if constexpr (fill_mode == SharedMemFillMode::kFillZero) {
int src_in_bytes = predicate ? 4 : 0;
asm volatile(
@@ -232,7 +167,6 @@ __device__ __forceinline__ void pred_load_32b(T* smem_ptr,
"l"(gmem_ptr),
"n"(4));
}
#endif
}
template <size_t num_bits, PrefetchMode prefetch_mode, typename T>

View File

@@ -1,4 +1,4 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
@@ -12,94 +12,27 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "helper.h"
#include "utils.cuh"
#include "multiquery_decoder_attention_impl.cuh"
template <typename T>
void DecodeMLAAttentionKernel(
const AppendAttnMetaData& meta_data,
const paddle::Tensor &q, // [token_num, num_heads, head_dim]
const paddle::Tensor &cache_k,
const paddle::Tensor &cache_v,
const paddle::optional<paddle::Tensor>& attn_mask,
const paddle::optional<paddle::Tensor>& shift_bias,
const paddle::optional<paddle::Tensor>& smooth_weight,
const paddle::Tensor &seq_lens_q, // q_seq_len is 1
const paddle::Tensor &seq_lens_kv,
const paddle::Tensor &batch_id_per_token,
const paddle::Tensor &cu_seqlens_q,
const paddle::Tensor &block_table,
int max_seq_len,
int max_dec_len,
float softmax_scale,
float in_scale,
bool causal,
cudaStream_t &stream,
paddle::Tensor *out) {
const auto token_num = meta_data.token_nums;
const auto block_size = meta_data.block_size;
const auto bsz = meta_data.batch_size;
const auto num_heads = meta_data.q_num_heads;
const auto group_size = meta_data.q_num_heads / meta_data.kv_num_heads;
const auto head_dim_qk = meta_data.head_dims;
const auto head_dim_v = meta_data.head_dims_v;
const float rope_scale = 0.0;
const float rope_theta = 0.0;
const uint32_t deal_each_time = get_cascade_attention_deal_each_time();
const uint32_t num_stage = get_cascade_attention_num_stages();
const uint32_t num_threads = get_cascade_attention_num_threads();
DISPATCH_CAUSAL(causal, CAUSAL,
{DISPATCH_MLA_GROUP_SIZE(group_size, GROUP_SIZE,
{DISPATCH_MLA_HEAD_DIM(head_dim_qk, HEAD_DIM_QK,
{DISPATCH_MLA_HEAD_DIM(head_dim_v, HEAD_DIM_V,
{DISPATCH_BLOCK_SIZE(block_size, BLOCK_SIZE,
{DISPATCH_DEAL_EACH_TIME(deal_each_time, DEAL_EACH_TIME,
{MultiQueryDecoderAttention<T, GROUP_SIZE, HEAD_DIM_QK, HEAD_DIM_V, BLOCK_SIZE, CAUSAL, 2, 16, DEAL_EACH_TIME>(
meta_data, stream, q, cache_k, cache_v, attn_mask, shift_bias, smooth_weight, seq_lens_q, seq_lens_kv, batch_id_per_token, cu_seqlens_q,
block_table, max_seq_len, max_dec_len, rope_scale, rope_theta, softmax_scale, in_scale, out);})})})})})});
}
template void DecodeMLAAttentionKernel<paddle::bfloat16>(
const AppendAttnMetaData& meta_data,
const paddle::Tensor &q, // [token_num, num_heads, head_dim]
const paddle::Tensor &cache_k,
const paddle::Tensor &cache_v,
const paddle::optional<paddle::Tensor>& attn_mask,
const paddle::optional<paddle::Tensor>& shift_bias,
const paddle::optional<paddle::Tensor>& smooth_weight,
const paddle::Tensor &seq_lens_q, // q_seq_len is 1
const paddle::Tensor &seq_lens_kv,
const paddle::Tensor &batch_id_per_token,
const paddle::Tensor &cu_seqlens_q,
const paddle::Tensor &block_table,
int max_seq_len,
int max_dec_len,
float softmax_scale,
float in_scale,
bool causal,
cudaStream_t &stream,
paddle::Tensor *out);
template void DecodeMLAAttentionKernel<paddle::float16>(
const AppendAttnMetaData& meta_data,
const paddle::Tensor &q, // [token_num, num_heads, head_dim]
const paddle::Tensor &cache_k,
const paddle::Tensor &cache_v,
const paddle::optional<paddle::Tensor>& attn_mask,
const paddle::optional<paddle::Tensor>& shift_bias,
const paddle::optional<paddle::Tensor>& smooth_weight,
const paddle::Tensor &seq_lens_q, // q_seq_len is 1
const paddle::Tensor &seq_lens_kv,
const paddle::Tensor &batch_id_per_token,
const paddle::Tensor &cu_seqlens_q,
const paddle::Tensor &block_table,
int max_seq_len,
int max_dec_len,
float softmax_scale,
float in_scale,
bool causal,
cudaStream_t &stream,
paddle::Tensor *out);
const AppendAttnMetaData& meta_data,
const paddle::Tensor &q, // [token_num, num_heads, head_dim]
const paddle::Tensor &cache_k,
const paddle::Tensor &cache_v,
const paddle::optional<paddle::Tensor>& attn_mask,
const paddle::optional<paddle::Tensor>& shift_bias,
const paddle::optional<paddle::Tensor>& smooth_weight,
const paddle::Tensor &seq_lens_q, // q_seq_len is 1
const paddle::Tensor &seq_lens_kv,
const paddle::Tensor &batch_id_per_token,
const paddle::Tensor &cu_seqlens_q,
const paddle::Tensor &block_table,
int max_seq_len,
int max_dec_len,
float softmax_scale,
float in_scale,
bool causal,
cudaStream_t &stream,
paddle::Tensor *out);

View File

@@ -1,56 +0,0 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "append_attention_func.cuh"
template <typename T,
uint32_t GROUP_SIZE,
uint32_t HEAD_DIM,
uint32_t BLOCK_SIZE,
bool CAUSAL,
uint32_t BLOCK_SHAPE_Q,
uint32_t NUM_WARP_Q,
typename OutT,
bool ENABLE_PREFILL = true>
void MultiQueryAppendAttention(
const AppendAttnMetaData &meta_data,
const paddle::Tensor &qkv,
const paddle::Tensor &cache_k,
const paddle::Tensor &cache_v,
const paddle::optional<paddle::Tensor> &attn_mask,
const paddle::optional<paddle::Tensor> &shift_bias,
const paddle::optional<paddle::Tensor> &smooth_weight,
const paddle::optional<paddle::Tensor> &sinks,
const paddle::Tensor &seq_lens_q,
const paddle::Tensor &seq_lens_kv,
const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &batch_id_per_token,
const paddle::Tensor &cu_seqlens_q,
const paddle::Tensor &block_table,
const paddle::Tensor &batch_ids,
const paddle::Tensor &tile_ids_per_batch,
const int num_blocks_x_cpu,
const int max_seq_len,
const int max_dec_len,
const float quant_max_bound,
const float quant_min_bound,
const float in_scale,
const int max_partition_size,
const int encoder_max_partition_size,
const int speculate_max_draft_token_num,
const bool is_decoder,
cudaStream_t &stream,
paddle::Tensor *out,
const int sliding_window);

File diff suppressed because it is too large Load Diff

View File

@@ -1,60 +0,0 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "append_attention_func.cuh"
template <typename T,
uint32_t GROUP_SIZE,
uint32_t HEAD_DIM,
uint32_t BLOCK_SIZE,
bool CAUSAL,
uint32_t BLOCK_SHAPE_Q,
uint32_t NUM_WARP_Q,
typename OutT = T,
bool ENABLE_PREFILL = true>
void MultiQueryAppendC4Attention(
const AppendAttnMetaData &meta_data,
const paddle::Tensor &qkv,
const paddle::Tensor &cache_k,
const paddle::Tensor &cache_v,
const paddle::optional<paddle::Tensor> &attn_mask,
const paddle::Tensor &cache_k_scale,
const paddle::Tensor &cache_v_scale,
const paddle::optional<paddle::Tensor> &cache_k_zp,
const paddle::optional<paddle::Tensor> &cache_v_zp,
const paddle::optional<paddle::Tensor> &shift_bias,
const paddle::optional<paddle::Tensor> &smooth_weight,
const paddle::optional<paddle::Tensor> &sinks,
const paddle::Tensor &seq_lens_q,
const paddle::Tensor &seq_lens_kv,
const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &batch_id_per_token,
const paddle::Tensor &cu_seqlens_q,
const paddle::Tensor &block_table,
const paddle::Tensor &batch_ids,
const paddle::Tensor &tile_ids_per_batch,
const int num_blocks_x_cpu,
const int max_seq_len,
const int max_dec_len,
const float quant_max_bound,
const float quant_min_bound,
const float in_scale,
const int max_partition_size,
const int encoder_max_partition_size,
const int speculate_max_draft_token_num,
const bool is_decoder,
cudaStream_t &stream,
paddle::Tensor *out,
const int sliding_window);

File diff suppressed because it is too large Load Diff

View File

@@ -1,60 +0,0 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "append_attention_func.cuh"
template <typename T,
uint32_t GROUP_SIZE,
uint32_t HEAD_DIM,
uint32_t BLOCK_SIZE,
bool CAUSAL,
uint32_t BLOCK_SHAPE_Q,
uint32_t NUM_WARP_Q,
typename OutT = T,
bool ENABLE_PREFILL = true,
bool IsFP8 = false,
bool IsDynamicC8 = false>
void MultiQueryAppendC8Attention(
const AppendAttnMetaData &meta_data,
const paddle::Tensor &qkv,
const paddle::Tensor &cache_k,
const paddle::Tensor &cache_v,
const paddle::optional<paddle::Tensor> &attn_mask,
const paddle::Tensor &cache_k_scale,
const paddle::Tensor &cache_v_scale,
const paddle::optional<paddle::Tensor> &shift_bias,
const paddle::optional<paddle::Tensor> &smooth_weight,
const paddle::optional<paddle::Tensor> &sinks,
const paddle::Tensor &seq_lens_q,
const paddle::Tensor &seq_lens_kv,
const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &batch_id_per_token,
const paddle::Tensor &cu_seqlens_q,
const paddle::Tensor &block_table,
const paddle::Tensor &batch_ids,
const paddle::Tensor &tile_ids_per_batch,
const int num_blocks_x_cpu,
const int max_seq_len,
const int max_dec_len,
const float quant_max_bound,
const float quant_min_bound,
const float in_scale,
const int max_partition_size,
const int encoder_max_partition_size,
const int speculate_max_draft_token_num,
const bool is_decoder,
cudaStream_t &stream,
paddle::Tensor *out,
const int sliding_window);

View File

@@ -1,39 +0,0 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "decode_attention_func.cuh"
template <typename T, uint32_t GROUP_SIZE, uint32_t HEAD_DIM_QK, uint32_t HEAD_DIM_V, uint32_t BLOCK_SIZE, bool CAUSAL, uint32_t NUM_STAGE, uint32_t cache_bytes, uint32_t DEAL_EACH_TIME>
void MultiQueryDecoderAttention(
const AppendAttnMetaData& meta_data,
cudaStream_t &stream,
const paddle::Tensor &q,
const paddle::Tensor &cache_k, // [max_block_num, num_kv_heads, block_size, head_dim]
const paddle::Tensor &cache_v, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>& attn_mask,
const paddle::optional<paddle::Tensor>& shift_bias,
const paddle::optional<paddle::Tensor>& smooth_weight,
const paddle::Tensor &seq_lens_q,
const paddle::Tensor &seq_lens_kv,
const paddle::Tensor &batch_id_per_token,
const paddle::Tensor &cu_seqlens_q,
const paddle::Tensor &block_table,
const int max_seq_len,
const int max_dec_len,
const float rope_scale,
const float rope_theta,
const float softmax_scale,
const float in_scale,
paddle::Tensor *out);

View File

@@ -18,167 +18,6 @@
#include "mma_tensor_op.cuh"
#include "utils.cuh"
template <typename T, int VecSize = 1, typename InT = T>
__global__ void append_speculate_cache_T_rope_qk_norm_kernel(
const InT* __restrict__ qkv, // [token_num, num_heads + 2 * gqa_group_size,
// head_size]
T* __restrict__ key_cache, // [num_blocks, gqa_group_size, block_size,
// head_size // 2]
T* __restrict__ value_cache, // [num_blocks, gqa_group_size, block_size,
// head_size // 2]
T* __restrict__ q_out,
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ batch_id_per_token, // [num_tokens]
const int* __restrict__ cu_seqlens_q,
const int* __restrict__ seq_lens_decoder, // [bsz]
const float* __restrict__ cos_emb,
const float* __restrict__ sin_emb,
const float*
qkv_out_scales, // [(num_heads + 2 * gqa_group_size) * head_size]
const T* qkv_biases, // [num_head + 2 * gqa_group_size, dim_head]
const int max_seq_len,
const int max_blocks_per_seq,
const int num_heads,
const int output_inner_dim,
const int head_size,
const int block_size,
const int elem_cnt,
const int gqa_group_size,
const float* q_norm_weight,
const float* k_norm_weight,
const float rms_norm_eps,
const bool rope_3d) {
using LoadT = AlignedVector<T, VecSize>;
using LoadFloat = AlignedVector<float, VecSize>;
using LoadInT = AlignedVector<InT, VecSize>;
constexpr int HalfVecSize = VecSize / 2;
using LoadEmbT = AlignedVector<float, HalfVecSize>;
LoadInT src_vec;
LoadFloat scale_vec;
LoadT bias_vec;
LoadEmbT cos_emb_vec;
LoadEmbT sin_emb_vec;
LoadFloat tmp_vec;
LoadFloat q_norm_vec;
LoadFloat k_norm_vec;
int64_t global_warp_idx = blockDim.y * blockIdx.x + threadIdx.y;
int64_t all_warp_num = gridDim.x * blockDim.y;
int64_t all_head_dim = elem_cnt / head_size;
const int64_t hidden_size = (num_heads + 2 * gqa_group_size) * head_size;
const int half_head_size = head_size / 2;
for (int global_hi = global_warp_idx; global_hi < all_head_dim;
global_hi += all_warp_num) {
int64_t linear_index = global_hi * head_size + threadIdx.x * VecSize;
const int token_id = linear_index / hidden_size;
const int ori_bi = batch_id_per_token[token_id];
if (ori_bi == -1) continue; // NOTE(gongshaotian): For CUDAGraph padding
if (seq_lens_decoder[ori_bi] == 0) continue;
const int bias = linear_index % hidden_size;
const int hi = bias / head_size; // q + k + v
const int h_bias = bias % head_size;
const int start_token_idx = cu_seqlens_q[ori_bi];
const int write_seq_id =
seq_lens_decoder[ori_bi] + token_id - start_token_idx;
if (write_seq_id == 0) continue;
const int* block_table_now = block_tables + ori_bi * max_blocks_per_seq;
const int block_idx = block_table_now[write_seq_id / block_size];
if (block_idx < 0) {
return; // NOTE(gongshaotian): For CUDAGraph padding
}
const int block_offset = write_seq_id % block_size;
const int write_q_idx =
token_id * output_inner_dim * head_size + hi * head_size + h_bias;
const int bias_idx = hi * head_size + h_bias;
Load<InT, VecSize>(&qkv[linear_index], &src_vec);
if (qkv_biases) {
Load<T, VecSize>(&qkv_biases[bias_idx], &bias_vec);
}
if (qkv_out_scales) {
Load<float, VecSize>(&qkv_out_scales[bias_idx], &scale_vec);
}
if (hi < num_heads + gqa_group_size) {
// q k rope
const int64_t emb_idx = write_seq_id * half_head_size + h_bias / 2;
uint32_t new_emb_idx =
rope_3d ? emb_idx + ori_bi * max_seq_len * head_size : emb_idx;
Load<float, HalfVecSize>(&cos_emb[new_emb_idx], &cos_emb_vec);
Load<float, HalfVecSize>(&sin_emb[new_emb_idx], &sin_emb_vec);
}
float thread_m2 = 0.0f;
float warp_m2 = 0.0f;
#pragma unroll
for (int i = 0; i < HalfVecSize; i++) {
// add_bias + rope
float input_left = static_cast<float>(src_vec[2 * i]);
float input_right = static_cast<float>(src_vec[2 * i + 1]);
if (qkv_out_scales) {
input_left *= scale_vec[2 * i];
input_right *= scale_vec[2 * i + 1];
}
if (qkv_biases) {
input_left = input_left + static_cast<float>(bias_vec[2 * i]);
input_right = input_right + static_cast<float>(bias_vec[2 * i + 1]);
}
if (hi < num_heads + gqa_group_size) {
const float cos_tmp = cos_emb_vec[i];
const float sin_tmp = sin_emb_vec[i];
float tmp1 = input_left * cos_tmp - input_right * sin_tmp;
float tmp2 = input_right * cos_tmp + input_left * sin_tmp;
thread_m2 += tmp1 * tmp1 + tmp2 * tmp2;
tmp_vec[2 * i] = tmp1;
tmp_vec[2 * i + 1] = tmp2;
} else {
bias_vec[2 * i] = static_cast<T>(input_left);
bias_vec[2 * i + 1] = static_cast<T>(input_right);
}
}
if (hi < (num_heads + gqa_group_size)) {
WelfordWarpAllReduce<float, 32>(thread_m2, &warp_m2);
float row_variance = max(warp_m2 / head_size, 0.0f);
float row_inv_var = Rsqrt(row_variance + rms_norm_eps);
if (hi < num_heads) {
Load<float, VecSize>(&q_norm_weight[threadIdx.x * VecSize],
&q_norm_vec);
#pragma unroll
for (int i = 0; i < VecSize; i++) {
bias_vec[i] =
static_cast<T>(tmp_vec[i] * row_inv_var * q_norm_vec[i]);
}
} else {
Load<float, VecSize>(&k_norm_weight[threadIdx.x * VecSize],
&k_norm_vec);
#pragma unroll
for (int i = 0; i < VecSize; i++) {
bias_vec[i] =
static_cast<T>(tmp_vec[i] * row_inv_var * k_norm_vec[i]);
}
}
}
if (hi < num_heads) {
// write q
Store<T, VecSize>(bias_vec, &q_out[write_q_idx]);
} else {
// write k/v
const int kv_head_idx = (hi - num_heads) % gqa_group_size;
const int tgt_idx = (block_idx * gqa_group_size * block_size * head_size +
kv_head_idx * block_size * head_size +
block_offset * head_size + h_bias);
// write
if (hi < num_heads + gqa_group_size) {
Store<T, VecSize>(bias_vec, &key_cache[tgt_idx]);
} else {
Store<T, VecSize>(bias_vec, &value_cache[tgt_idx]);
}
}
}
}
template <int VecSize = 4, int HeadDim = 128>
__global__ void append_clear_cache_int8_block(
uint8_t* __restrict__ key_cache, // [num_blocks, gqa_group_size,
@@ -186,7 +25,7 @@ __global__ void append_clear_cache_int8_block(
uint8_t* __restrict__ value_cache, // [num_blocks, gqa_group_size,
// block_size, head_size // 2]
const int* __restrict__ seq_lens,
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ batch_id_per_token, // [num_tokens]
const int* __restrict__ cu_seqlens_q,
const int* __restrict__ seq_lens_encoder, // [bsz]
@@ -204,7 +43,6 @@ __global__ void append_clear_cache_int8_block(
const int token_id = blockIdx.x;
const int bid = batch_id_per_token[token_id];
if (bid == -1) return; // NOTE(gongshaotian): For CUDAGraph padding
const int start_token_idx = cu_seqlens_q[bid];
const int head_idx = blockIdx.y * NUM_WARPS + wid;
@@ -253,6 +91,7 @@ __global__ void append_clear_cache_int8_block(
}
}
template <int VecSize = 4, int HeadDim = 128>
__global__ void append_clear_cache_int4_block(
uint8_t* __restrict__ key_cache, // [num_blocks, gqa_group_size,
@@ -260,7 +99,7 @@ __global__ void append_clear_cache_int4_block(
uint8_t* __restrict__ value_cache, // [num_blocks, gqa_group_size,
// block_size, head_size // 2]
const int* __restrict__ seq_lens,
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ batch_id_per_token, // [num_tokens]
const int* __restrict__ cu_seqlens_q,
const int* __restrict__ seq_lens_encoder, // [bsz]
@@ -278,7 +117,6 @@ __global__ void append_clear_cache_int4_block(
const int token_id = blockIdx.x;
const int bid = batch_id_per_token[token_id];
if (bid == -1) return; // NOTE(gongshaotian): For CUDAGraph padding
const int start_token_idx = cu_seqlens_q[bid];
const int head_idx = blockIdx.y * NUM_WARPS + wid;
@@ -339,7 +177,7 @@ __global__ void append_speculate_cache_rope_kernel(
T* __restrict__ value_cache, // [num_blocks, gqa_group_size, block_size,
// head_size // 2]
T* __restrict__ q_out,
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ batch_id_per_token, // [num_tokens]
const int* __restrict__ cu_seqlens_q,
const int* __restrict__ seq_lens_decoder, // [bsz]
@@ -355,8 +193,7 @@ __global__ void append_speculate_cache_rope_kernel(
const int head_size,
const int block_size,
const int elem_cnt,
const int gqa_group_size,
const bool rope_3d) {
const int gqa_group_size) {
using LoadT = AlignedVector<T, VecSize>;
using LoadFloat = AlignedVector<float, VecSize>;
using LoadInT = AlignedVector<InT, VecSize>;
@@ -378,8 +215,6 @@ __global__ void append_speculate_cache_rope_kernel(
linear_index += step) {
const int token_id = linear_index / hidden_size;
const int ori_bi = batch_id_per_token[token_id];
if (ori_bi == -1) continue; // NOTE(gongshaotian): For CUDAGraph padding
if (seq_lens_decoder[ori_bi] == 0) continue;
const int bias = linear_index % hidden_size;
const int hi = bias / head_size; // q + k + v
@@ -392,7 +227,15 @@ __global__ void append_speculate_cache_rope_kernel(
const int* block_table_now = block_tables + ori_bi * max_blocks_per_seq;
const int block_idx = block_table_now[write_seq_id / block_size];
if (block_idx < 0) {
return; // NOTE(gongshaotian): For CUDAGraph padding
printf(
"Fatal Error!!!, block idx %d when write_seq_id is %d\n some key var "
"%d %d %d %d\n",
block_idx,
write_seq_id,
ori_bi,
seq_lens_decoder[ori_bi],
token_id,
cu_seqlens_q[ori_bi]);
}
const int block_offset = write_seq_id % block_size;
@@ -410,10 +253,8 @@ __global__ void append_speculate_cache_rope_kernel(
if (hi < num_heads + gqa_group_size) {
// q k rope
const int64_t emb_idx = write_seq_id * half_head_size + h_bias / 2;
int64_t new_emb_idx =
rope_3d ? emb_idx + ori_bi * max_seq_len * head_size : emb_idx;
Load<float, HalfVecSize>(&cos_emb[new_emb_idx], &cos_emb_vec);
Load<float, HalfVecSize>(&sin_emb[new_emb_idx], &sin_emb_vec);
Load<float, HalfVecSize>(&cos_emb[emb_idx], &cos_emb_vec);
Load<float, HalfVecSize>(&sin_emb[emb_idx], &sin_emb_vec);
}
#pragma unroll
for (int i = 0; i < HalfVecSize; i++) {
@@ -469,7 +310,7 @@ __global__ void append_speculate_cache_neox_rope_kernel(
T* __restrict__ value_cache, // [num_blocks, gqa_group_size, block_size,
// head_size // 2]
T* __restrict__ qkv_out,
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ batch_id_per_token, // [num_tokens]
const int* __restrict__ cu_seqlens_q,
const int* __restrict__ seq_lens_decoder, // [bsz]
@@ -485,8 +326,7 @@ __global__ void append_speculate_cache_neox_rope_kernel(
const int head_size,
const int block_size,
const int elem_cnt,
const int gqa_group_size,
const bool rope_3d) {
const int gqa_group_size) {
using LoadT = AlignedVector<T, VecSize>;
using LoadFloat = AlignedVector<float, VecSize>;
using LoadInT = AlignedVector<InT, VecSize>;
@@ -508,7 +348,6 @@ __global__ void append_speculate_cache_neox_rope_kernel(
linear_index += step) {
const int token_id = linear_index / half_hidden_size;
const int ori_bi = batch_id_per_token[token_id];
if (ori_bi == -1) continue; // NOTE(gongshaotian): For CUDAGraph padding
if (seq_lens_decoder[ori_bi] == 0) continue;
const int bias = linear_index % half_hidden_size;
const int hi = bias / half_head_size; // q + k + v
@@ -521,7 +360,15 @@ __global__ void append_speculate_cache_neox_rope_kernel(
const int* block_table_now = block_tables + ori_bi * max_blocks_per_seq;
const int block_idx = block_table_now[write_seq_id / block_size];
if (block_idx < 0) {
return; // NOTE(gongshaotian): For CUDAGraph padding
printf(
"Fatal Error!!!, block idx %d when write_seq_id is %d\n some key var "
"%d %d %d %d\n",
block_idx,
write_seq_id,
ori_bi,
seq_lens_decoder[ori_bi],
token_id,
cu_seqlens_q[ori_bi]);
}
const int block_offset = write_seq_id % block_size;
@@ -543,10 +390,8 @@ __global__ void append_speculate_cache_neox_rope_kernel(
if (hi < num_heads + gqa_group_size) {
// q k rope
const int64_t emb_idx = write_seq_id * head_size + h_bias;
int64_t new_emb_idx =
rope_3d ? emb_idx + ori_bi * max_seq_len * head_size * 2 : emb_idx;
Load<float, VecSize>(&cos_emb[new_emb_idx], &cos_emb_vec);
Load<float, VecSize>(&sin_emb[new_emb_idx], &sin_emb_vec);
Load<float, VecSize>(&cos_emb[emb_idx], &cos_emb_vec);
Load<float, VecSize>(&sin_emb[emb_idx], &sin_emb_vec);
}
#pragma unroll
for (int i = 0; i < VecSize; i++) {
@@ -598,277 +443,6 @@ __global__ void append_speculate_cache_neox_rope_kernel(
}
}
template <typename T,
int VecSize = 4,
int RoundType = 0,
int HeadDim = 128,
bool IsFP8 = false>
__global__ void append_speculate_cache_fp8_rope_qk_norm_dynamic_kernel(
const T* __restrict__ quant_qkv, // [num_head, num_heads + 2 *
// gqa_group_size, head_size]
uint8_t* __restrict__ key_cache, // [num_blocks, gqa_group_size,
// block_size, head_size // 2]
uint8_t* __restrict__ value_cache, // [num_blocks, gqa_group_size,
// block_size, head_size // 2]
T* __restrict__ qkv_out,
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ batch_id_per_token, // [num_tokens]
const int* __restrict__ cu_seqlens_q,
const int* __restrict__ seq_lens, // [bsz]
const int* __restrict__ seq_lens_encoder, // [bsz]
const float* __restrict__ cos_emb,
const float* __restrict__ sin_emb,
T* __restrict__ cache_k_scale,
T* __restrict__ cache_v_scale,
const float* q_norm_weight,
const float* k_norm_weight,
const int max_seq_len,
const int max_blocks_per_seq,
const int num_heads,
const int block_size,
const float max_bound,
const float min_bound,
const int gqa_group_size,
const bool rope_3d,
const float rms_norm_eps) {
static_assert(HeadDim == 128, "just support HeadDim be 128 now!");
static_assert(VecSize == 4, "just support VecSize be 4 now, 32 * 4!");
constexpr int NUM_WARPS = 4;
const int tid = threadIdx.x;
const int wid = tid / 32;
const int lane_id = tid % 32;
const int token_id = blockIdx.x;
const int bid = batch_id_per_token[token_id];
if (bid == -1) return; // NOTE(gongshaotian): For CUDAGraph padding
const int start_token_idx = cu_seqlens_q[bid];
const int head_idx = blockIdx.y * NUM_WARPS + wid;
int q_head_idx, k_head_idx, v_idx;
const int64_t hidden_size = (num_heads + 2 * gqa_group_size) * HeadDim;
constexpr int half_head_size = HeadDim / 2;
if (seq_lens_encoder[bid] > 0) return;
const int write_seq_id = seq_lens[bid] + token_id - start_token_idx;
if (write_seq_id == 0) return;
const int* block_table_now = block_tables + bid * max_blocks_per_seq;
const int block_idx = __ldg(&block_table_now[write_seq_id / block_size]);
const int block_offset = write_seq_id % block_size;
int cache_offset;
if (head_idx < num_heads) {
cache_offset = 0;
} else if (head_idx < num_heads + 2 * gqa_group_size) {
cache_offset = block_idx * gqa_group_size * block_size +
(head_idx - num_heads) % gqa_group_size * block_size +
block_offset;
}
T* cache_k_scale_now = cache_k_scale + cache_offset;
T* cache_v_scale_now = cache_v_scale + cache_offset;
float thread_m2 = 0.0f;
float warp_m2 = 0.0f;
if (head_idx < num_heads) {
// q
using LoadT = AlignedVector<T, VecSize>;
using LoadBiasT = AlignedVector<T, VecSize>;
using LoadOutScaleT = AlignedVector<float, VecSize>;
constexpr int HalfVecSize = VecSize / 2;
using LoadEmbT = AlignedVector<float, HalfVecSize>;
LoadT src_vec;
LoadBiasT bias_vec;
LoadOutScaleT out_scale_vec;
LoadEmbT cos_emb_vec;
LoadEmbT sin_emb_vec;
const T* qkv_now = quant_qkv + token_id * hidden_size;
T* qkv_out_now = qkv_out + token_id * hidden_size;
#pragma unroll
for (uint32_t head_bias = lane_id * VecSize; head_bias < HeadDim;
head_bias += 32 * VecSize) {
const int bias_idx = head_idx * HeadDim + head_bias;
Load<T, VecSize>(&qkv_now[bias_idx], &src_vec);
// q rope
const uint32_t emb_idx = write_seq_id * half_head_size + head_bias / 2;
uint32_t new_emb_idx =
rope_3d ? emb_idx + bid * max_seq_len * HeadDim : emb_idx;
Load<float, HalfVecSize>(&cos_emb[new_emb_idx], &cos_emb_vec);
Load<float, HalfVecSize>(&sin_emb[new_emb_idx], &sin_emb_vec);
#pragma unroll
for (int i = 0; i < HalfVecSize; i++) {
// dequant + add_bias + rope
float input_left = static_cast<float>(src_vec[2 * i]);
float input_right = static_cast<float>(src_vec[2 * i + 1]);
const float cos_tmp = cos_emb_vec[i];
const float sin_tmp = sin_emb_vec[i];
float tmp1 = input_left * cos_tmp - input_right * sin_tmp;
float tmp2 = input_right * cos_tmp + input_left * sin_tmp;
thread_m2 += tmp1 * tmp1 + tmp2 * tmp2;
bias_vec[2 * i] = static_cast<T>(tmp1);
bias_vec[2 * i + 1] = static_cast<T>(tmp2);
}
// qk norm
if (q_norm_weight) {
WelfordWarpAllReduce<float, 32>(thread_m2, &warp_m2);
float row_variance = max(warp_m2 / HeadDim, 0.0f);
float row_inv_var = Rsqrt(row_variance + rms_norm_eps);
LoadOutScaleT q_norm_vec;
Load<float, VecSize>(&q_norm_weight[lane_id * VecSize], &q_norm_vec);
#pragma unroll
for (int i = 0; i < VecSize; i++) {
bias_vec[i] = static_cast<T>(static_cast<float>(bias_vec[i]) *
row_inv_var * q_norm_vec[i]);
}
}
Store<T, VecSize>(bias_vec, &qkv_out_now[bias_idx]);
}
} else if (head_idx < num_heads + 2 * gqa_group_size) {
// k
constexpr int KV_VEC_SIZE = 16 / sizeof(uint8_t); // 16
using LoadPadKVT = AlignedVector<uint8_t, KV_VEC_SIZE>;
const uint32_t kv_head_idx = (head_idx - num_heads) % gqa_group_size;
constexpr int K_VEC_SIZE = 4;
constexpr int HALF_K_VEC_SIZE = 2;
using LoadKVResT = AlignedVector<uint8_t, K_VEC_SIZE>;
using LoadKVT = AlignedVector<uint8_t, HALF_K_VEC_SIZE>;
using LoadT = AlignedVector<T, HALF_K_VEC_SIZE>;
using LoadBiasT = AlignedVector<T, HALF_K_VEC_SIZE>;
using LoadOutScaleT = AlignedVector<float, HALF_K_VEC_SIZE>;
using LoadEmbT = AlignedVector<float, 1>;
LoadKVResT cache_vec;
LoadT src_vec1, src_vec2;
LoadBiasT bias_vec1, bias_vec2;
LoadOutScaleT out_scale_vec1, out_scale_vec2;
LoadEmbT cos_emb_vec1, cos_emb_vec2;
LoadEmbT sin_emb_vec1, sin_emb_vec2;
const T* qkv_now = quant_qkv + token_id * hidden_size;
const int head_bias = lane_id / 4 * 16 + lane_id % 4 * 2;
const int bias_idx = head_idx * HeadDim + head_bias;
Load<T, HALF_K_VEC_SIZE>(&qkv_now[bias_idx], &src_vec1);
Load<T, HALF_K_VEC_SIZE>(&qkv_now[bias_idx + 8], &src_vec2);
T scale = T(1.0f);
const int k_head_idx = head_idx - num_heads;
const int v_head_idx = head_idx - num_heads - gqa_group_size;
if (head_idx < num_heads + gqa_group_size) {
const uint32_t emb_idx = write_seq_id * half_head_size + head_bias / 2;
uint32_t new_emb_idx =
rope_3d ? emb_idx + bid * max_seq_len * HeadDim : emb_idx;
Load<float, 1>(&cos_emb[new_emb_idx], &cos_emb_vec1);
Load<float, 1>(&cos_emb[new_emb_idx + 4], &cos_emb_vec2);
Load<float, 1>(&sin_emb[new_emb_idx], &sin_emb_vec1);
Load<float, 1>(&sin_emb[new_emb_idx + 4], &sin_emb_vec2);
}
float input_left = static_cast<float>(src_vec1[0]);
float input_right = static_cast<float>(src_vec1[1]);
if (head_idx < num_heads + gqa_group_size) {
float cos_tmp = cos_emb_vec1[0];
float sin_tmp = sin_emb_vec1[0];
float tmp1 = input_left * cos_tmp - input_right * sin_tmp;
float tmp2 = input_right * cos_tmp + input_left * sin_tmp;
thread_m2 += tmp1 * tmp1 + tmp2 * tmp2;
bias_vec1[0] = static_cast<T>(tmp1);
bias_vec1[1] = static_cast<T>(tmp2);
} else {
bias_vec1[0] = static_cast<T>(input_left);
bias_vec1[1] = static_cast<T>(input_right);
}
input_left = static_cast<float>(src_vec2[0]);
input_right = static_cast<float>(src_vec2[1]);
if (head_idx < num_heads + gqa_group_size) {
float cos_tmp = cos_emb_vec2[0];
float sin_tmp = sin_emb_vec2[0];
float tmp1 = input_left * cos_tmp - input_right * sin_tmp;
float tmp2 = input_right * cos_tmp + input_left * sin_tmp;
thread_m2 += tmp1 * tmp1 + tmp2 * tmp2;
bias_vec2[0] = static_cast<T>(tmp1);
bias_vec2[1] = static_cast<T>(tmp2);
} else {
bias_vec2[0] = static_cast<T>(input_left);
bias_vec2[1] = static_cast<T>(input_right);
}
if (k_norm_weight) {
if (head_idx < num_heads + gqa_group_size) {
LoadOutScaleT k_norm_vec1, k_norm_vec2;
Load<float, HALF_K_VEC_SIZE>(&k_norm_weight[head_bias], &k_norm_vec1);
Load<float, HALF_K_VEC_SIZE>(&k_norm_weight[head_bias + 8],
&k_norm_vec2);
// qk norm
WelfordWarpAllReduce<float, 32>(thread_m2, &warp_m2);
float row_variance = max(warp_m2 / HeadDim, 0.0f);
float row_inv_var = Rsqrt(row_variance + rms_norm_eps);
for (int i = 0; i < HALF_K_VEC_SIZE; i++) {
bias_vec1[i] = static_cast<T>(static_cast<float>(bias_vec1[i]) *
row_inv_var * k_norm_vec1[i]);
bias_vec2[i] = static_cast<T>(static_cast<float>(bias_vec2[i]) *
row_inv_var * k_norm_vec2[i]);
}
}
}
// reduce max, 1 head per warp
T local_max = -INFINITY;
#pragma unroll
for (int i = 0; i < HALF_K_VEC_SIZE; i++) {
local_max = __hmax(local_max, __habs(bias_vec1[i]));
local_max = __hmax(local_max, __habs(bias_vec2[i]));
}
#pragma unroll
for (int m_offset = 16; m_offset > 0; m_offset /= 2) {
local_max =
__hmax(local_max, __shfl_xor_sync(0xffffffff, local_max, m_offset));
}
scale = __hdiv(448, local_max);
if (lane_id == 0) {
if (head_idx < num_heads + gqa_group_size) {
cache_k_scale_now[0] = __hdiv(1, scale);
} else {
cache_v_scale_now[0] = __hdiv(1, scale);
}
}
#pragma unroll
for (uint32_t i = 0; i < HALF_K_VEC_SIZE; i++) {
cache_vec[i] = QuantToC8<T, true, IsFP8, RoundType>(
scale, bias_vec1[i], max_bound, min_bound);
cache_vec[i + HALF_K_VEC_SIZE] = QuantToC8<T, true, IsFP8, RoundType>(
scale, bias_vec2[i], max_bound, min_bound);
}
if (head_idx < num_heads + gqa_group_size) {
const int start_block_16 =
block_offset / 16 * 16 + block_offset % 8 + lane_id / 4 % 2 * 8;
const uint32_t tgt_cache_idx =
block_idx * gqa_group_size * block_size * HeadDim +
kv_head_idx * block_size * HeadDim + start_block_16 * HeadDim +
lane_id / 4 / 2 * 32 + (block_offset % 16) / 8 * 16 + lane_id % 4 * 4;
Store<uint8_t, K_VEC_SIZE>(cache_vec, &key_cache[tgt_cache_idx]);
} else {
const uint32_t base_tgt_cache_idx =
block_idx * gqa_group_size * HeadDim * block_size +
kv_head_idx * HeadDim * block_size +
(lane_id / 4 * 16 + lane_id % 4 * 2) * block_size +
block_offset / 16 % 2 * 8 * block_size + block_offset / 16 / 2 * 32;
const uint32_t tgt_cache_idx1 = base_tgt_cache_idx +
block_offset % 8 / 2 * 4 // per 4
+ block_offset % 16 / 8 * 2 // per 2
+ block_offset % 2; // per 1
const uint32_t tgt_cache_idx2 = tgt_cache_idx1 + block_size;
const uint32_t tgt_cache_idx3 = tgt_cache_idx1 + 16;
const uint32_t tgt_cache_idx4 = tgt_cache_idx3 + block_size;
value_cache[tgt_cache_idx1] = cache_vec[0];
value_cache[tgt_cache_idx2] = cache_vec[1];
value_cache[tgt_cache_idx3] = cache_vec[2];
value_cache[tgt_cache_idx4] = cache_vec[3];
}
}
}
template <typename T,
int VecSize = 4,
int RoundType = 0,
@@ -883,7 +457,7 @@ __global__ void append_speculate_cache_int8_rope_kernel(
uint8_t* __restrict__ value_cache, // [num_blocks, gqa_group_size,
// block_size, head_size // 2]
T* __restrict__ qkv_out,
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ batch_id_per_token, // [num_tokens]
const int* __restrict__ cu_seqlens_q,
const int* __restrict__ seq_lens, // [bsz]
@@ -902,8 +476,7 @@ __global__ void append_speculate_cache_int8_rope_kernel(
const int block_size,
const float max_bound,
const float min_bound,
const int gqa_group_size,
const bool rope_3d) {
const int gqa_group_size) {
static_assert(HeadDim == 128, "just support HeadDim be 128 now!");
static_assert(VecSize == 4, "just support VecSize be 4 now, 32 * 4!");
constexpr int NUM_WARPS = 4;
@@ -913,7 +486,6 @@ __global__ void append_speculate_cache_int8_rope_kernel(
const int token_id = blockIdx.x;
const int bid = batch_id_per_token[token_id];
if (bid == -1) return; // NOTE(gongshaotian): For CUDAGraph padding
const int start_token_idx = cu_seqlens_q[bid];
const int head_idx = blockIdx.y * NUM_WARPS + wid;
@@ -950,10 +522,8 @@ __global__ void append_speculate_cache_int8_rope_kernel(
// q rope
const uint32_t emb_idx = write_seq_id * half_head_size + head_bias / 2;
uint32_t new_emb_idx =
rope_3d ? emb_idx + bid * max_seq_len * HeadDim : emb_idx;
Load<float, HalfVecSize>(&cos_emb[new_emb_idx], &cos_emb_vec);
Load<float, HalfVecSize>(&sin_emb[new_emb_idx], &sin_emb_vec);
Load<float, HalfVecSize>(&cos_emb[emb_idx], &cos_emb_vec);
Load<float, HalfVecSize>(&sin_emb[emb_idx], &sin_emb_vec);
if (qkv_out_scales) {
Load<float, VecSize>(&qkv_out_scales[bias_idx], &out_scale_vec);
}
@@ -1013,12 +583,10 @@ __global__ void append_speculate_cache_int8_rope_kernel(
T scale;
if (head_idx < num_heads + gqa_group_size) {
const uint32_t emb_idx = write_seq_id * half_head_size + head_bias / 2;
uint32_t new_emb_idx =
rope_3d ? emb_idx + bid * max_seq_len * HeadDim : emb_idx;
Load<float, 1>(&cos_emb[new_emb_idx], &cos_emb_vec1);
Load<float, 1>(&cos_emb[new_emb_idx + 4], &cos_emb_vec2);
Load<float, 1>(&sin_emb[new_emb_idx], &sin_emb_vec1);
Load<float, 1>(&sin_emb[new_emb_idx + 4], &sin_emb_vec2);
Load<float, 1>(&cos_emb[emb_idx], &cos_emb_vec1);
Load<float, 1>(&cos_emb[emb_idx + 4], &cos_emb_vec2);
Load<float, 1>(&sin_emb[emb_idx], &sin_emb_vec1);
Load<float, 1>(&sin_emb[emb_idx + 4], &sin_emb_vec2);
scale = __ldg(&cache_k_scales[kv_head_idx]);
} else {
scale = __ldg(&cache_v_scales[kv_head_idx]);
@@ -1076,10 +644,8 @@ __global__ void append_speculate_cache_int8_rope_kernel(
}
#pragma unroll
for (uint32_t i = 0; i < HALF_K_VEC_SIZE; i++) {
cache_vec[i] = QuantToC8<T, true, IsFP8, RoundType>(
scale, bias_vec1[i], max_bound, min_bound);
cache_vec[i + HALF_K_VEC_SIZE] = QuantToC8<T, true, IsFP8, RoundType>(
scale, bias_vec2[i], max_bound, min_bound);
cache_vec[i] = QuantToC8<T,true, IsFP8, RoundType>(scale, bias_vec1[i], max_bound, min_bound);
cache_vec[i + HALF_K_VEC_SIZE] = QuantToC8<T,true, IsFP8, RoundType>(scale, bias_vec2[i], max_bound, min_bound);
}
if (head_idx < num_heads + gqa_group_size) {
const int start_block_16 =
@@ -1123,7 +689,7 @@ __global__ void append_speculate_cache_int8_neox_rope_kernel(
uint8_t* __restrict__ value_cache, // [num_blocks, gqa_group_size,
// block_size, head_size // 2]
T* __restrict__ qkv_out,
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ batch_id_per_token, // [num_tokens]
const int* __restrict__ cu_seqlens_q,
const int* __restrict__ seq_lens, // [bsz]
@@ -1142,8 +708,7 @@ __global__ void append_speculate_cache_int8_neox_rope_kernel(
const int block_size,
const float max_bound,
const float min_bound,
const int gqa_group_size,
const bool rope_3d) {
const int gqa_group_size) {
static_assert(HeadDim == 128, "just support HeadDim be 128 now!");
static_assert(VecSize == 4, "just support VecSize be 4 now, 32 * 4!");
constexpr int NUM_WARPS = 4;
@@ -1153,7 +718,6 @@ __global__ void append_speculate_cache_int8_neox_rope_kernel(
const int token_id = blockIdx.x;
const int bid = batch_id_per_token[token_id];
if (bid == -1) return; // NOTE(gongshaotian): For CUDAGraph padding
const int start_token_idx = cu_seqlens_q[bid];
const int head_idx = blockIdx.y * NUM_WARPS + wid;
@@ -1193,10 +757,8 @@ __global__ void append_speculate_cache_int8_neox_rope_kernel(
// q rope
const uint32_t emb_idx = write_seq_id * HeadDim + head_bias;
uint32_t new_emb_idx =
rope_3d ? emb_idx + bid * max_seq_len * HeadDim * 2 : emb_idx;
Load<float, VecSize>(&cos_emb[new_emb_idx], &cos_emb_vec);
Load<float, VecSize>(&sin_emb[new_emb_idx], &sin_emb_vec);
Load<float, VecSize>(&cos_emb[emb_idx], &cos_emb_vec);
Load<float, VecSize>(&sin_emb[emb_idx], &sin_emb_vec);
if (qkv_out_scales) {
Load<float, VecSize>(&qkv_out_scales[bias_idx_left],
&left_out_scale_vec);
@@ -1291,12 +853,10 @@ __global__ void append_speculate_cache_int8_neox_rope_kernel(
T scale;
const uint32_t emb_idx = write_seq_id * HeadDim + head_bias;
uint32_t new_emb_idx =
rope_3d ? emb_idx + bid * max_seq_len * HeadDim * 2 : emb_idx;
Load<float, HALF_K_VEC_SIZE>(&cos_emb[new_emb_idx], &cos_emb_vec1);
Load<float, HALF_K_VEC_SIZE>(&cos_emb[new_emb_idx + 8], &cos_emb_vec2);
Load<float, HALF_K_VEC_SIZE>(&sin_emb[new_emb_idx], &sin_emb_vec1);
Load<float, HALF_K_VEC_SIZE>(&sin_emb[new_emb_idx + 8], &sin_emb_vec2);
Load<float, HALF_K_VEC_SIZE>(&cos_emb[emb_idx], &cos_emb_vec1);
Load<float, HALF_K_VEC_SIZE>(&cos_emb[emb_idx + 8], &cos_emb_vec2);
Load<float, HALF_K_VEC_SIZE>(&sin_emb[emb_idx], &sin_emb_vec1);
Load<float, HALF_K_VEC_SIZE>(&sin_emb[emb_idx + 8], &sin_emb_vec2);
scale = __ldg(&cache_k_scales[kv_head_idx]);
#pragma unroll
for (int i = 0; i < HALF_K_VEC_SIZE; i++) {
@@ -1507,7 +1067,7 @@ __global__ void append_speculate_cache_int4_rope_kernel(
uint8_t* __restrict__ value_cache, // [num_blocks, gqa_group_size,
// block_size, head_size // 2]
T* __restrict__ qkv_out,
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ batch_id_per_token, // [num_tokens]
const int* __restrict__ cu_seqlens_q,
const int* __restrict__ seq_lens, // [bsz]
@@ -1528,8 +1088,7 @@ __global__ void append_speculate_cache_int4_rope_kernel(
const int block_size,
const float max_bound,
const float min_bound,
const int gqa_group_size,
const bool rope_3d) {
const int gqa_group_size) {
static_assert(HeadDim == 128, "just support HeadDim be 128 now!");
static_assert(VecSize == 4, "just support VecSize be 4 now, 32 * 4!");
constexpr int NUM_WARPS = 4;
@@ -1540,7 +1099,6 @@ __global__ void append_speculate_cache_int4_rope_kernel(
const int token_id = blockIdx.x;
const int bid = batch_id_per_token[token_id];
if (bid == -1) return; // NOTE(gongshaotian): For CUDAGraph padding
const int start_token_idx = cu_seqlens_q[bid];
const int head_idx = blockIdx.y * NUM_WARPS + wid;
@@ -1587,10 +1145,8 @@ __global__ void append_speculate_cache_int4_rope_kernel(
// Load<float, VecSize>(&qkv_out_scales[bias_idx], &out_scale_vec);
// q rope
const uint32_t emb_idx = write_seq_id * half_head_size + head_bias / 2;
uint32_t new_emb_idx =
rope_3d ? emb_idx + bid * max_seq_len * HeadDim : emb_idx;
Load<float, HalfVecSize>(&cos_emb[new_emb_idx], &cos_emb_vec);
Load<float, HalfVecSize>(&sin_emb[new_emb_idx], &sin_emb_vec);
Load<float, HalfVecSize>(&cos_emb[emb_idx], &cos_emb_vec);
Load<float, HalfVecSize>(&sin_emb[emb_idx], &sin_emb_vec);
#pragma unroll
for (int i = 0; i < HalfVecSize; i++) {
// dequant + add_bias + rope
@@ -1679,12 +1235,10 @@ __global__ void append_speculate_cache_int4_rope_kernel(
// &out_scale_vec2);
if (head_idx < num_heads + gqa_group_size) {
const uint32_t emb_idx = write_seq_id * half_head_size + head_bias / 2;
uint32_t new_emb_idx =
rope_3d ? emb_idx + bid * max_seq_len * HeadDim : emb_idx;
Load<float, 1>(&cos_emb[new_emb_idx], &cos_emb_vec1);
Load<float, 1>(&cos_emb[new_emb_idx + 4], &cos_emb_vec2);
Load<float, 1>(&sin_emb[new_emb_idx], &sin_emb_vec1);
Load<float, 1>(&sin_emb[new_emb_idx + 4], &sin_emb_vec2);
Load<float, 1>(&cos_emb[emb_idx], &cos_emb_vec1);
Load<float, 1>(&cos_emb[emb_idx + 4], &cos_emb_vec2);
Load<float, 1>(&sin_emb[emb_idx], &sin_emb_vec1);
Load<float, 1>(&sin_emb[emb_idx + 4], &sin_emb_vec2);
Load<T, HALF_K_VEC_SIZE>(&cache_k_scales[cache_idx], &scale_vec1);
Load<T, HALF_K_VEC_SIZE>(&cache_k_scales[cache_idx + 8], &scale_vec2);
Load<T, HALF_K_VEC_SIZE>(&cache_k_zero_points[cache_idx], &zp_vec1);
@@ -1787,6 +1341,7 @@ __global__ void append_speculate_cache_int4_rope_kernel(
}
Store<uint8_t, K_VEC_SIZE>(cache_vec, &key_cache[tgt_cache_idx]);
} else {
const uint32_t base_tgt_cache_idx =
block_idx * gqa_group_size * HeadDim * half_block_size +
kv_head_idx * HeadDim * half_block_size +
@@ -1855,7 +1410,7 @@ __global__ void append_speculate_cache_int4_neox_rope_kernel(
uint8_t* __restrict__ value_cache, // [num_blocks, gqa_group_size,
// block_size, head_size // 2]
T* __restrict__ qkv_out,
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ block_tables, // [bsz, max_blocks_per_seq]
const int* __restrict__ batch_id_per_token, // [num_tokens]
const int* __restrict__ cu_seqlens_q,
const int* __restrict__ seq_lens, // [bsz]
@@ -1876,8 +1431,7 @@ __global__ void append_speculate_cache_int4_neox_rope_kernel(
const int block_size,
const float max_bound,
const float min_bound,
const int gqa_group_size,
const bool rope_3d) {
const int gqa_group_size) {
static_assert(HeadDim == 128, "just support HeadDim be 128 now!");
static_assert(VecSize == 4, "just support VecSize be 4 now, 32 * 4!");
constexpr int NUM_WARPS = 4;
@@ -1888,7 +1442,6 @@ __global__ void append_speculate_cache_int4_neox_rope_kernel(
const int token_id = blockIdx.x;
const int bid = batch_id_per_token[token_id];
if (bid == -1) return; // NOTE(gongshaotian): For CUDAGraph padding
const int start_token_idx = cu_seqlens_q[bid];
const int head_idx = blockIdx.y * NUM_WARPS + wid;
@@ -2028,12 +1581,10 @@ __global__ void append_speculate_cache_int4_neox_rope_kernel(
&right_out_scale_vec2);
const uint32_t emb_idx = write_seq_id * HeadDim + head_bias;
uint32_t new_emb_idx =
rope_3d ? emb_idx + bid * max_seq_len * HeadDim : emb_idx;
Load<float, HALF_K_VEC_SIZE>(&cos_emb[new_emb_idx], &cos_emb_vec1);
Load<float, HALF_K_VEC_SIZE>(&cos_emb[new_emb_idx + 8], &cos_emb_vec2);
Load<float, HALF_K_VEC_SIZE>(&sin_emb[new_emb_idx], &sin_emb_vec1);
Load<float, HALF_K_VEC_SIZE>(&sin_emb[new_emb_idx + 8], &sin_emb_vec2);
Load<float, HALF_K_VEC_SIZE>(&cos_emb[emb_idx], &cos_emb_vec1);
Load<float, HALF_K_VEC_SIZE>(&cos_emb[emb_idx + 8], &cos_emb_vec2);
Load<float, HALF_K_VEC_SIZE>(&sin_emb[emb_idx], &sin_emb_vec1);
Load<float, HALF_K_VEC_SIZE>(&sin_emb[emb_idx + 8], &sin_emb_vec2);
Load<T, HALF_K_VEC_SIZE>(&cache_k_scales[left_cache_idx],
&left_scale_vec1);
Load<T, HALF_K_VEC_SIZE>(&cache_k_scales[left_cache_idx + 8],
@@ -2067,6 +1618,7 @@ __global__ void append_speculate_cache_int4_neox_rope_kernel(
right_bias_vec1[i] =
static_cast<T>(input_right * cos_tmp + input_left * sin_tmp);
input_left = static_cast<float>(left_src_vec2[i]);
input_right = static_cast<float>(right_src_vec2[i]);
cos_tmp = cos_emb_vec2[i];

View File

@@ -15,78 +15,6 @@
#include "speculate_write_cache_with_rope_kernel.h"
#include "utils.cuh"
template <typename T, typename QKV_TYPE>
void append_speculate_cache_rope_qk_norm(const QKV_TYPE* qkv,
T* key_cache,
T* value_cache,
T* qkv_out,
const int* block_tables,
const int* batch_id_per_token,
const int* cu_seqlens_q,
const int* seq_lens,
const int* seq_lens_encoder,
const float* cos_emb,
const float* sin_emb,
const float* qkv_out_scales,
const T* qkv_biases,
const int max_seq_len,
const int max_blocks_per_seq,
const int num_heads,
const int kv_num_heads,
const int dim_head,
const int block_size,
const int bsz,
const int token_num,
const cudaStream_t& stream,
const bool use_neox_style,
const float* q_norm_weight,
const float* k_norm_weight,
const float rms_norm_eps,
const bool rope_3d) {
int output_inner_dim = num_heads + 2 * kv_num_heads;
const uint32_t elem_nums =
use_neox_style ? token_num * (num_heads + 2 * kv_num_heads) * dim_head / 2
: token_num * (num_heads + 2 * kv_num_heads) * dim_head;
constexpr int HEAD_DIM = 128;
constexpr int PackSize = HEAD_DIM / kWarpSize;
const int pack_num = elem_nums / PackSize;
const int blocksize = 128;
int grid_size = 1;
GetNumBlocks<128>(pack_num, &grid_size);
if (use_neox_style) {
PD_THROW(
"append_speculate_cache_rope_qk_norm not support neox rope yet");
} else {
dim3 block_dim(kWarpSize, blocksize / kWarpSize, 1);
append_speculate_cache_T_rope_qk_norm_kernel<T, PackSize>
<<<grid_size, block_dim, 0, stream>>>(qkv,
key_cache,
value_cache,
qkv_out,
block_tables,
batch_id_per_token,
cu_seqlens_q,
seq_lens,
cos_emb,
sin_emb,
qkv_out_scales,
qkv_biases,
max_seq_len,
max_blocks_per_seq,
num_heads,
output_inner_dim,
dim_head,
block_size,
elem_nums,
kv_num_heads,
q_norm_weight,
k_norm_weight,
rms_norm_eps,
rope_3d);
}
}
// rope + write
template <typename T, typename QKV_TYPE>
void append_speculate_cache_rope(const QKV_TYPE* qkv,
@@ -111,8 +39,7 @@ void append_speculate_cache_rope(const QKV_TYPE* qkv,
const int bsz,
const int token_num,
const cudaStream_t& stream,
const bool use_neox_style,
const bool rope_3d) {
const bool use_neox_style) {
int output_inner_dim = num_heads + 2 * kv_num_heads;
const uint32_t elem_nums =
@@ -146,8 +73,7 @@ void append_speculate_cache_rope(const QKV_TYPE* qkv,
dim_head,
block_size,
elem_nums,
kv_num_heads,
rope_3d);
kv_num_heads);
} else {
append_speculate_cache_rope_kernel<T, PackSize>
<<<grid_size, threads_per_block, 0, stream>>>(
@@ -170,83 +96,10 @@ void append_speculate_cache_rope(const QKV_TYPE* qkv,
dim_head,
block_size,
elem_nums,
kv_num_heads,
rope_3d);
kv_num_heads);
}
}
template <typename T>
void append_speculate_cache_fp8_dynamic_rope(const T* qkv,
uint8_t* key_cache,
uint8_t* value_cache,
T* qkv_out,
const int* block_tables,
const int* batch_id_per_token,
const int* cu_seqlens_q,
const int* seq_lens,
const int* seq_lens_encoder,
const float* cos_emb,
const float* sin_emb,
T* cache_k_scale,
T* cache_v_scale,
const float* q_norm_weight,
const float* k_norm_weight,
const int max_seq_len,
const int max_blocks_per_seq,
const int num_heads,
const int kv_num_heads,
const int dim_head,
const int block_size,
const int bsz,
const int token_num,
const cudaStream_t& stream,
const bool rope_3d,
const float rms_norm_eps) {
constexpr int num_warps = 4;
const int all_warps =
((num_heads + 2 * kv_num_heads) + num_warps - 1) / num_warps * num_warps;
dim3 grids(token_num, all_warps / num_warps);
append_clear_cache_int8_block<4>
<<<grids, num_warps * 32, 0, stream>>>(key_cache,
value_cache,
seq_lens,
block_tables,
batch_id_per_token,
cu_seqlens_q,
seq_lens_encoder,
max_seq_len,
max_blocks_per_seq,
num_heads,
block_size,
kv_num_heads);
append_speculate_cache_fp8_rope_qk_norm_dynamic_kernel<T, 4, 0, 128, true>
<<<grids, num_warps * 32, 0, stream>>>(qkv,
key_cache,
value_cache,
qkv_out,
block_tables,
batch_id_per_token,
cu_seqlens_q,
seq_lens,
seq_lens_encoder,
cos_emb,
sin_emb,
cache_k_scale,
cache_v_scale,
q_norm_weight,
k_norm_weight,
max_seq_len,
max_blocks_per_seq,
num_heads,
block_size,
127.0f,
-127.0f,
kv_num_heads,
rope_3d,
rms_norm_eps);
}
template <typename T, typename QKV_TYPE, bool IsFP8=false>
void append_speculate_cache_int8_rope(const QKV_TYPE* qkv,
uint8_t* key_cache,
@@ -272,8 +125,7 @@ void append_speculate_cache_int8_rope(const QKV_TYPE* qkv,
const int bsz,
const int token_num,
const cudaStream_t& stream,
const bool use_neox_style,
const bool rope_3d) {
const bool use_neox_style) {
constexpr int num_warps = 4;
const int all_warps =
((num_heads + 2 * kv_num_heads) + num_warps - 1) / num_warps * num_warps;
@@ -315,8 +167,7 @@ void append_speculate_cache_int8_rope(const QKV_TYPE* qkv,
block_size,
127.0f,
-127.0f,
kv_num_heads,
rope_3d);
kv_num_heads);
} else {
append_speculate_cache_int8_rope_kernel<T, 4, 0, 128, QKV_TYPE, IsFP8>
<<<grids, num_warps * 32, 0, stream>>>(qkv,
@@ -340,8 +191,7 @@ void append_speculate_cache_int8_rope(const QKV_TYPE* qkv,
block_size,
127.0f,
-127.0f,
kv_num_heads,
rope_3d);
kv_num_heads);
}
}
@@ -372,8 +222,7 @@ void append_speculate_cache_int4_rope(const QKV_TYPE* qkv,
const int bsz,
const int token_num,
const cudaStream_t& stream,
const bool use_neox_style,
const bool rope_3d) {
const bool use_neox_style) {
constexpr int num_warps = 4;
const int all_warps =
((num_heads + 2 * kv_num_heads) + num_warps - 1) / num_warps * num_warps;
@@ -417,8 +266,7 @@ void append_speculate_cache_int4_rope(const QKV_TYPE* qkv,
block_size,
7.0f,
-8.0f,
kv_num_heads,
rope_3d);
kv_num_heads);
} else {
append_speculate_cache_int4_rope_kernel<T, 4>
<<<grids, num_warps * 32, 0, stream>>>(qkv,
@@ -444,8 +292,7 @@ void append_speculate_cache_int4_rope(const QKV_TYPE* qkv,
block_size,
7.0f,
-8.0f,
kv_num_heads,
rope_3d);
kv_num_heads);
}
}
template <typename T, typename QKV_TYPE>
@@ -466,15 +313,11 @@ void SpeculateWriteCacheWithRoPEKernel(
const paddle::optional<paddle::Tensor>& cache_v_zp,
const std::string& cache_quant_type_str,
const bool use_neox_rotary_style,
const bool rope_3d,
const int max_seq_len,
cudaStream_t& stream,
paddle::Tensor* qkv_out,
paddle::Tensor* key_cache_out,
paddle::Tensor* value_cache_out,
const paddle::optional<paddle::Tensor>& q_norm_weight,
const paddle::optional<paddle::Tensor>& k_norm_weight,
const float rms_norm_eps) {
paddle::Tensor* value_cache_out) {
typedef cascade_attn_type_traits<T> traits_;
typedef cascade_attn_type_traits<QKV_TYPE> qkt_nv_type_;
typedef typename traits_::type DataType_;
@@ -499,243 +342,142 @@ void SpeculateWriteCacheWithRoPEKernel(
? rotary_embs.get().data<float>() + max_seq_len * dim_head
: rotary_embs.get().data<float>() + max_seq_len * dim_head / 2;
}
if (q_norm_weight && k_norm_weight) {
if (cache_quant_type_str == "none") {
append_speculate_cache_rope_qk_norm(
reinterpret_cast<const QKV_TYPE*>(qkv_ptr),
reinterpret_cast<DataType_*>(key_cache_out->data<T>()),
reinterpret_cast<DataType_*>(value_cache_out->data<T>()),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? reinterpret_cast<DataType_*>(
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
block_size,
bsz,
token_nums,
stream,
use_neox_rotary_style,
reinterpret_cast<const float*>(q_norm_weight.get().data<float>()),
reinterpret_cast<const float*>(k_norm_weight.get().data<float>()),
rms_norm_eps,
rope_3d);
} else if (cache_quant_type_str == "block_wise_fp8") {
append_speculate_cache_fp8_dynamic_rope(
reinterpret_cast<const DataType_*>(qkv_ptr),
key_cache_out->data<uint8_t>(),
value_cache_out->data<uint8_t>(),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
const_cast<DataType_*>(reinterpret_cast<const DataType_*>(cache_k_scale.get().data<T>())),
const_cast<DataType_*>(reinterpret_cast<const DataType_*>(cache_v_scale.get().data<T>())),
q_norm_weight.get().data<float>(),
k_norm_weight.get().data<float>(),
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
block_size,
bsz,
token_nums,
stream,
rope_3d,
rms_norm_eps
);
} else {
PD_THROW(
"append_decode_cache_rope_qk_norm not support cachekv quant yet");
}
if (cache_quant_type_str == "none") {
append_speculate_cache_rope(
reinterpret_cast<const QKV_TYPE*>(qkv_ptr),
reinterpret_cast<DataType_*>(key_cache_out->data<T>()),
reinterpret_cast<DataType_*>(value_cache_out->data<T>()),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? reinterpret_cast<DataType_*>(
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
block_size,
bsz,
token_nums,
stream,
use_neox_rotary_style);
} else if (cache_quant_type_str == "cache_int8") {
append_speculate_cache_int8_rope(
reinterpret_cast<const QKV_TYPE*>(qkv_ptr),
key_cache_out->data<uint8_t>(),
value_cache_out->data<uint8_t>(),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? reinterpret_cast<DataType_*>(
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
cache_k_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_k_scale.get().data<T>()))
: nullptr,
cache_v_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_v_scale.get().data<T>()))
: nullptr,
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
block_size,
bsz,
token_nums,
stream,
use_neox_rotary_style);
} else if (cache_quant_type_str == "cache_fp8") {
append_speculate_cache_int8_rope<DataType_, QKV_TYPE, true>(
reinterpret_cast<const QKV_TYPE*>(qkv_ptr),
key_cache_out->data<uint8_t>(),
value_cache_out->data<uint8_t>(),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? reinterpret_cast<DataType_*>(
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
cache_k_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_k_scale.get().data<T>()))
: nullptr,
cache_v_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_v_scale.get().data<T>()))
: nullptr,
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
block_size,
bsz,
token_nums,
stream,
use_neox_rotary_style);
} else if (cache_quant_type_str == "cache_int4_zp") {
append_speculate_cache_int4_rope(
reinterpret_cast<const QKV_TYPE*>(qkv_ptr),
key_cache_out->data<uint8_t>(),
value_cache_out->data<uint8_t>(),
reinterpret_cast<DataType_*>(const_cast<T*>(qkv_out->data<T>())),
block_tables.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? reinterpret_cast<DataType_*>(
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
cache_k_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_k_scale.get().data<T>()))
: nullptr,
cache_v_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_v_scale.get().data<T>()))
: nullptr,
cache_k_zp ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_k_zp.get().data<T>()))
: nullptr,
cache_v_zp ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_v_zp.get().data<T>()))
: nullptr,
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
block_size,
bsz,
token_nums,
stream,
use_neox_rotary_style);
} else {
if (cache_quant_type_str == "none") {
append_speculate_cache_rope(
reinterpret_cast<const QKV_TYPE*>(qkv_ptr),
reinterpret_cast<DataType_*>(key_cache_out->data<T>()),
reinterpret_cast<DataType_*>(value_cache_out->data<T>()),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? reinterpret_cast<DataType_*>(
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
block_size,
bsz,
token_nums,
stream,
use_neox_rotary_style,
rope_3d);
} else if (cache_quant_type_str == "cache_int8") {
append_speculate_cache_int8_rope(
reinterpret_cast<const QKV_TYPE*>(qkv_ptr),
key_cache_out->data<uint8_t>(),
value_cache_out->data<uint8_t>(),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? reinterpret_cast<DataType_*>(
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
cache_k_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_k_scale.get().data<T>()))
: nullptr,
cache_v_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_v_scale.get().data<T>()))
: nullptr,
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
block_size,
bsz,
token_nums,
stream,
use_neox_rotary_style,
rope_3d);
} else if (cache_quant_type_str == "cache_fp8") {
append_speculate_cache_int8_rope<DataType_, QKV_TYPE, true>(
reinterpret_cast<const QKV_TYPE*>(qkv_ptr),
key_cache_out->data<uint8_t>(),
value_cache_out->data<uint8_t>(),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? reinterpret_cast<DataType_*>(
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
cache_k_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_k_scale.get().data<T>()))
: nullptr,
cache_v_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_v_scale.get().data<T>()))
: nullptr,
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
block_size,
bsz,
token_nums,
stream,
use_neox_rotary_style,
rope_3d);
} else if (cache_quant_type_str == "block_wise_fp8") {
append_speculate_cache_fp8_dynamic_rope(
reinterpret_cast<const DataType_*>(qkv_ptr),
key_cache_out->data<uint8_t>(),
value_cache_out->data<uint8_t>(),
reinterpret_cast<DataType_*>(qkv_out->data<T>()),
block_tables.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
const_cast<DataType_*>(reinterpret_cast<const DataType_*>(cache_k_scale.get().data<T>())),
const_cast<DataType_*>(reinterpret_cast<const DataType_*>(cache_v_scale.get().data<T>())),
nullptr, // q_norm_weight
nullptr, // k_norm_weight
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
block_size,
bsz,
token_nums,
stream,
rope_3d,
rms_norm_eps
);
} else if (cache_quant_type_str == "cache_int4_zp") {
append_speculate_cache_int4_rope(
reinterpret_cast<const QKV_TYPE*>(qkv_ptr),
key_cache_out->data<uint8_t>(),
value_cache_out->data<uint8_t>(),
reinterpret_cast<DataType_*>(const_cast<T*>(qkv_out->data<T>())),
block_tables.data<int>(),
batch_id_per_token.data<int>(),
cu_seqlens_q.data<int>(),
seq_lens.data<int>(),
seq_lens_encoder.data<int>(),
cos_emb,
sin_emb,
qkv_out_scales ? qkv_out_scales.get().data<float>() : nullptr,
qkv_biases ? reinterpret_cast<DataType_*>(
const_cast<T*>(qkv_biases.get().data<T>()))
: nullptr,
cache_k_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_k_scale.get().data<T>()))
: nullptr,
cache_v_scale ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_v_scale.get().data<T>()))
: nullptr,
cache_k_zp ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_k_zp.get().data<T>()))
: nullptr,
cache_v_zp ? reinterpret_cast<DataType_*>(
const_cast<T*>(cache_v_zp.get().data<T>()))
: nullptr,
max_seq_len,
max_blocks_per_seq,
num_heads,
kv_num_heads,
dim_head,
block_size,
bsz,
token_nums,
stream,
use_neox_rotary_style,
rope_3d);
} else {
PD_THROW(
"cache_quant_type_str should be one of [none, cache_int8, "
"cache_int4_zp]");
}
PD_THROW(
"cache_quant_type_str should be one of [none, cache_int8, "
"cache_int4_zp]");
}
}
@@ -758,15 +500,11 @@ template void SpeculateWriteCacheWithRoPEKernel<paddle::bfloat16, int>(
const paddle::optional<paddle::Tensor>& cache_v_zp,
const std::string& cache_quant_type_str,
const bool use_neox_rotary_style,
const bool rope_3d,
const int max_seq_len,
cudaStream_t& stream,
paddle::Tensor* qkv_out,
paddle::Tensor* key_cache_out,
paddle::Tensor* value_cache_out,
const paddle::optional<paddle::Tensor>& q_norm_weight,
const paddle::optional<paddle::Tensor>& k_norm_weight,
const float rms_norm_eps);
paddle::Tensor* value_cache_out);
template void
SpeculateWriteCacheWithRoPEKernel<paddle::bfloat16, paddle::bfloat16>(
@@ -788,15 +526,11 @@ SpeculateWriteCacheWithRoPEKernel<paddle::bfloat16, paddle::bfloat16>(
const paddle::optional<paddle::Tensor>& cache_v_zp,
const std::string& cache_quant_type_str,
const bool use_neox_rotary_style,
const bool rope_3d,
const int max_seq_len,
cudaStream_t& stream,
paddle::Tensor* qkv_out,
paddle::Tensor* key_cache_out,
paddle::Tensor* value_cache_out,
const paddle::optional<paddle::Tensor>& q_norm_weight,
const paddle::optional<paddle::Tensor>& k_norm_weight,
const float rms_norm_eps);
paddle::Tensor* value_cache_out);
template void SpeculateWriteCacheWithRoPEKernel<paddle::float16, int>(
const AppendAttnMetaData& meta_data,
@@ -817,15 +551,11 @@ template void SpeculateWriteCacheWithRoPEKernel<paddle::float16, int>(
const paddle::optional<paddle::Tensor>& cache_v_zp,
const std::string& cache_quant_type_str,
const bool use_neox_rotary_style,
const bool rope_3d,
const int max_seq_len,
cudaStream_t& stream,
paddle::Tensor* qkv_out,
paddle::Tensor* key_cache_out,
paddle::Tensor* value_cache_out,
const paddle::optional<paddle::Tensor>& q_norm_weight,
const paddle::optional<paddle::Tensor>& k_norm_weight,
const float rms_norm_eps);
paddle::Tensor* value_cache_out);
template void
@@ -848,12 +578,8 @@ SpeculateWriteCacheWithRoPEKernel<paddle::float16, paddle::float16>(
const paddle::optional<paddle::Tensor>& cache_v_zp,
const std::string& cache_quant_type_str,
const bool use_neox_rotary_style,
const bool rope_3d,
const int max_seq_len,
cudaStream_t& stream,
paddle::Tensor* qkv_out,
paddle::Tensor* key_cache_out,
paddle::Tensor* value_cache_out,
const paddle::optional<paddle::Tensor>& q_norm_weight,
const paddle::optional<paddle::Tensor>& k_norm_weight,
const float rms_norm_eps);
paddle::Tensor* value_cache_out);

View File

@@ -35,12 +35,8 @@ void SpeculateWriteCacheWithRoPEKernel(
const paddle::optional<paddle::Tensor>& cache_v_zp,
const std::string& cache_quant_type_str,
const bool use_neox_rotary_style,
const bool rope_3d,
const int max_seq_len,
cudaStream_t& stream,
paddle::Tensor* qkv_out,
paddle::Tensor* key_cache_out,
paddle::Tensor* value_cache_out,
const paddle::optional<paddle::Tensor>& q_norm_weight,
const paddle::optional<paddle::Tensor>& k_norm_weight,
const float rms_norm_eps);
paddle::Tensor* value_cache_out);

View File

@@ -1,144 +0,0 @@
{
"multiquery_attention_c8": {
"name": "multiquery_attention_c8",
"function_name": "MultiQueryAppendC8Attention",
"impl_file": "multiquery_attention_c8_impl.cuh",
"template_params": [
"T",
"GROUP_SIZE",
"HEAD_DIM",
"BLOCK_SIZE",
"CAUSAL",
"BLOCK_SHAPE_Q",
"NUM_WARP_Q",
"OutT",
"ENABLE_PREFILL",
"IsFP8",
"IsDynamicC8"
],
"dispatch_params": {
"GROUP_SIZE": [1, 2, 4, 5, 6, 7, 8, 12, 14, 16],
"HEAD_DIM": [128],
"BLOCK_SIZE": [64],
"CAUSAL": [0, 1],
"BLOCK_SHAPE_Q": [16, 32, 64, 128],
"ENABLE_PREFILL": [0, 1],
"IsFP8": [0, 1],
"IsDynamicC8": [0, 1]
},
"data_types": [
["paddle::float16", "paddle::float16", "float16_float16"],
["paddle::float16", "paddle::float8_e4m3fn", "float16_fp8"],
["paddle::float16", "int8_t", "float16_int8"],
["paddle::bfloat16", "paddle::bfloat16", "bfloat16_bfloat16"],
["paddle::bfloat16", "paddle::float8_e4m3fn", "bfloat16_fp8"],
["paddle::bfloat16", "int8_t", "bfloat16_int8"]
],
"max_instances_per_file": 80,
"file_prefix": "multiquery_attention_c8_",
"function_signature": "template void {function_name}{template_args}(\n const AppendAttnMetaData &meta_data,\n const paddle::Tensor &qkv,\n const paddle::Tensor &cache_k,\n const paddle::Tensor &cache_v,\n const paddle::optional<paddle::Tensor> &attn_mask,\n const paddle::Tensor &cache_k_scale,\n const paddle::Tensor &cache_v_scale,\n const paddle::optional<paddle::Tensor> &shift_bias,\n const paddle::optional<paddle::Tensor> &smooth_weight,\n const paddle::optional<paddle::Tensor> &sinks,\n const paddle::Tensor &seq_lens_q,\n const paddle::Tensor &seq_lens_kv,\n const paddle::Tensor &seq_lens_encoder,\n const paddle::Tensor &batch_id_per_token,\n const paddle::Tensor &cu_seqlens_q,\n const paddle::Tensor &block_table,\n const paddle::Tensor &batch_ids,\n const paddle::Tensor &tile_ids_per_batch,\n const int num_blocks_x_cpu,\n const int max_seq_len,\n const int max_dec_len,\n const float quant_max_bound,\n const float quant_min_bound,\n const float in_scale,\n const int max_partition_size,\n const int encoder_max_partition_size,\n const int speculate_max_draft_token_num,\n const bool is_decoder,\n cudaStream_t &stream,\n paddle::Tensor *out,\n const int sliding_window);\n\n"
},
"multiquery_attention_c4": {
"name": "multiquery_attention_c4",
"function_name": "MultiQueryAppendC4Attention",
"impl_file": "multiquery_attention_c4_impl.cuh",
"template_params": [
"T",
"GROUP_SIZE",
"HEAD_DIM",
"BLOCK_SIZE",
"CAUSAL",
"BLOCK_SHAPE_Q",
"NUM_WARP_Q",
"OutT",
"ENABLE_PREFILL"
],
"dispatch_params": {
"GROUP_SIZE": [1, 2, 4, 5, 6, 7, 8, 12, 14, 16],
"HEAD_DIM": [128],
"BLOCK_SIZE": [64],
"CAUSAL": [0, 1],
"BLOCK_SHAPE_Q": [16, 32, 64, 128],
"ENABLE_PREFILL": [0, 1]
},
"data_types": [
["paddle::float16", "paddle::float16", "float16_float16"],
["paddle::float16", "paddle::float8_e4m3fn", "float16_fp8"],
["paddle::float16", "int8_t", "float16_int8"],
["paddle::bfloat16", "paddle::bfloat16", "bfloat16_bfloat16"],
["paddle::bfloat16", "paddle::float8_e4m3fn", "bfloat16_fp8"],
["paddle::bfloat16", "int8_t", "bfloat16_int8"]
],
"max_instances_per_file": 160,
"file_prefix": "multiquery_attention_c4_",
"function_signature": "template void {function_name}{template_args}(\n const AppendAttnMetaData &meta_data,\n const paddle::Tensor &qkv,\n const paddle::Tensor &cache_k,\n const paddle::Tensor &cache_v,\n const paddle::optional<paddle::Tensor> &attn_mask,\n const paddle::Tensor &cache_k_scale,\n const paddle::Tensor &cache_v_scale,\n const paddle::optional<paddle::Tensor> &cache_k_zp,\n const paddle::optional<paddle::Tensor> &cache_v_zp,\n const paddle::optional<paddle::Tensor> &shift_bias,\n const paddle::optional<paddle::Tensor> &smooth_weight,\n const paddle::optional<paddle::Tensor> &sinks,\n const paddle::Tensor &seq_lens_q,\n const paddle::Tensor &seq_lens_kv,\n const paddle::Tensor &seq_lens_encoder,\n const paddle::Tensor &batch_id_per_token,\n const paddle::Tensor &cu_seqlens_q,\n const paddle::Tensor &block_table,\n const paddle::Tensor &batch_ids,\n const paddle::Tensor &tile_ids_per_batch,\n const int num_blocks_x_cpu,\n const int max_seq_len,\n const int max_dec_len,\n const float quant_max_bound,\n const float quant_min_bound,\n const float in_scale,\n const int max_partition_size,\n const int encoder_max_partition_size,\n const int speculate_max_draft_token_num,\n const bool is_decoder,\n cudaStream_t &stream,\n paddle::Tensor *out,\n const int sliding_window);\n\n"
},
"multiquery_attention_c16": {
"name": "multiquery_attention_c16",
"function_name": "MultiQueryAppendAttention",
"impl_file": "multiquery_attention_c16_impl.cuh",
"template_params": [
"T",
"GROUP_SIZE",
"HEAD_DIM",
"BLOCK_SIZE",
"CAUSAL",
"BLOCK_SHAPE_Q",
"NUM_WARP_Q",
"OutT",
"ENABLE_PREFILL"
],
"dispatch_params": {
"GROUP_SIZE": [1, 2, 4, 5, 6, 7, 8, 12, 14, 16],
"HEAD_DIM": [64,128],
"BLOCK_SIZE": [64],
"CAUSAL": [0, 1],
"BLOCK_SHAPE_Q": [16, 32, 64, 128],
"ENABLE_PREFILL": [0, 1]
},
"data_types": [
["paddle::float16", "paddle::float16", "float16_float16"],
["paddle::float16", "paddle::float8_e4m3fn", "float16_fp8"],
["paddle::float16", "int8_t", "float16_int8"],
["paddle::bfloat16", "paddle::bfloat16", "bfloat16_bfloat16"],
["paddle::bfloat16", "paddle::float8_e4m3fn", "bfloat16_fp8"],
["paddle::bfloat16", "int8_t", "bfloat16_int8"]
],
"max_instances_per_file": 160,
"file_prefix": "multiquery_attention_c16_",
"function_signature": "template void {function_name}{template_args}(\n const AppendAttnMetaData &meta_data,\n const paddle::Tensor &qkv,\n const paddle::Tensor &cache_k,\n const paddle::Tensor &cache_v,\n const paddle::optional<paddle::Tensor> &attn_mask,\n const paddle::optional<paddle::Tensor> &shift_bias,\n const paddle::optional<paddle::Tensor> &smooth_weight,\n const paddle::optional<paddle::Tensor> &sinks,\n const paddle::Tensor &seq_lens_q,\n const paddle::Tensor &seq_lens_kv,\n const paddle::Tensor &seq_lens_encoder,\n const paddle::Tensor &batch_id_per_token,\n const paddle::Tensor &cu_seqlens_q,\n const paddle::Tensor &block_table,\n const paddle::Tensor &batch_ids,\n const paddle::Tensor &tile_ids_per_batch,\n const int num_blocks_x_cpu,\n const int max_seq_len,\n const int max_dec_len,\n const float quant_max_bound,\n const float quant_min_bound,\n const float in_scale,\n const int max_partition_size,\n const int encoder_max_partition_size,\n const int speculate_max_draft_token_num,\n const bool is_decoder,\n cudaStream_t &stream,\n paddle::Tensor *out,\n const int sliding_window);\n\n"
},
"multiquery_decoder_attention": {
"name": "multiquery_decoder_attention",
"function_name": "MultiQueryDecoderAttention",
"impl_file": "multiquery_decoder_attention_impl.cuh",
"template_params": [
"T",
"GROUP_SIZE",
"HEAD_DIM_QK",
"HEAD_DIM_V",
"BLOCK_SIZE",
"CAUSAL",
"NUM_STAGE",
"cache_bytes",
"DEAL_EACH_TIME"
],
"dispatch_params": {
"GROUP_SIZE": [8, 16, 128],
"HEAD_DIM_QK": [128, 192, 512, 576],
"HEAD_DIM_V": [128, 192, 512, 576],
"BLOCK_SIZE": [64],
"CAUSAL": [0, 1],
"NUM_STAGE": [2],
"cache_bytes": [16],
"DEAL_EACH_TIME": [32, 64]
},
"data_types": [
["paddle::float16", "", "float16"],
["paddle::bfloat16", "", "bfloat16"]
],
"max_instances_per_file": 60,
"file_prefix": "multiquery_decoder_attention_",
"function_signature": "template void {function_name}{template_args}(\n const AppendAttnMetaData& meta_data,\n cudaStream_t &stream,\n const paddle::Tensor &q,\n const paddle::Tensor &cache_k,\n const paddle::Tensor &cache_v,\n const paddle::optional<paddle::Tensor>& attn_mask,\n const paddle::optional<paddle::Tensor>& shift_bias,\n const paddle::optional<paddle::Tensor>& smooth_weight,\n const paddle::Tensor &seq_lens_q,\n const paddle::Tensor &seq_lens_kv,\n const paddle::Tensor &batch_id_per_token,\n const paddle::Tensor &cu_seqlens_q,\n const paddle::Tensor &block_table,\n const int max_seq_len,\n const int max_dec_len,\n const float rope_scale,\n const float rope_theta,\n const float softmax_scale,\n const float in_scale,\n paddle::Tensor *out);\n\n"
}
}

View File

@@ -0,0 +1,59 @@
// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "../append_attention_c16_impl.cuh"
template void CascadeAppendAttentionC16Kernel<paddle::bfloat16, paddle::bfloat16>(
const AppendAttnMetaData& meta_data,
const paddle::Tensor& qkv, // [token_num, num_heads, head_dim]
const paddle::Tensor&
cache_k, // [max_block_num, num_heads, block_size, head_dim]
const paddle::Tensor&
cache_v, // [max_block_num, num_heads, head_dim, block_size]
const paddle::optional<paddle::Tensor>& attn_mask,
const paddle::optional<paddle::Tensor>&
cache_k_scale, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
cache_v_scale, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
cache_k_zp, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
cache_v_zp, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
shift_bias, // [num_kv_heads, head_dim]
const paddle::optional<paddle::Tensor>&
smooth_weight, // [num_kv_heads, head_dim]
const paddle::Tensor& seq_lens_q,
const paddle::Tensor& seq_lens_kv,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& block_table,
const paddle::Tensor& batch_ids,
const paddle::Tensor& tile_ids_per_batch,
const int num_blocks,
const int block_shape_q,
const int max_seq_len,
const int max_dec_len,
const float quant_max_bound,
const float quant_min_bound,
const float in_scale,
const int max_partition_size,
const int encoder_max_partition_size,
const int speculate_max_draft_token_num,
const bool causal,
const bool is_decoder,
const bool enable_prefill,
cudaStream_t& stream,
paddle::Tensor* out);

Some files were not shown because too many files have changed in this diff Show More