mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
Move cpp code to directory csrcs
(#42)
* move cpp code to csrcs * move cpp code to csrcs
This commit is contained in:
@@ -1,88 +0,0 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <pybind11/numpy.h>
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <type_traits>
|
||||
|
||||
#include "fastdeploy/fastdeploy_runtime.h"
|
||||
|
||||
#ifdef ENABLE_VISION
|
||||
#include "fastdeploy/vision.h"
|
||||
#endif
|
||||
|
||||
namespace fastdeploy {
|
||||
|
||||
void BindBackend(pybind11::module&);
|
||||
void BindVision(pybind11::module&);
|
||||
|
||||
pybind11::dtype FDDataTypeToNumpyDataType(const FDDataType& fd_dtype);
|
||||
|
||||
FDDataType NumpyDataTypeToFDDataType(const pybind11::dtype& np_dtype);
|
||||
|
||||
void PyArrayToTensor(pybind11::array& pyarray, FDTensor* tensor,
|
||||
bool share_buffer = false);
|
||||
|
||||
#ifdef ENABLE_VISION
|
||||
cv::Mat PyArrayToCvMat(pybind11::array& pyarray);
|
||||
#endif
|
||||
|
||||
template <typename T> FDDataType CTypeToFDDataType() {
|
||||
if (std::is_same<T, int32_t>::value) {
|
||||
return FDDataType::INT32;
|
||||
} else if (std::is_same<T, int64_t>::value) {
|
||||
return FDDataType::INT64;
|
||||
} else if (std::is_same<T, float>::value) {
|
||||
return FDDataType::FP32;
|
||||
} else if (std::is_same<T, double>::value) {
|
||||
return FDDataType::FP64;
|
||||
}
|
||||
FDASSERT(false,
|
||||
"CTypeToFDDataType only support int32/int64/float32/float64 now.");
|
||||
return FDDataType::FP32;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::vector<pybind11::array>
|
||||
PyBackendInfer(T& self, const std::vector<std::string>& names,
|
||||
std::vector<pybind11::array>& data) {
|
||||
std::vector<FDTensor> inputs(data.size());
|
||||
for (size_t i = 0; i < data.size(); ++i) {
|
||||
// TODO(jiangjiajun) here is considered to use user memory directly
|
||||
inputs[i].dtype = NumpyDataTypeToFDDataType(data[i].dtype());
|
||||
inputs[i].shape.insert(inputs[i].shape.begin(), data[i].shape(),
|
||||
data[i].shape() + data[i].ndim());
|
||||
inputs[i].data.resize(data[i].nbytes());
|
||||
memcpy(inputs[i].data.data(), data[i].mutable_data(), data[i].nbytes());
|
||||
inputs[i].name = names[i];
|
||||
}
|
||||
|
||||
std::vector<FDTensor> outputs(self.NumOutputs());
|
||||
self.Infer(inputs, &outputs);
|
||||
|
||||
std::vector<pybind11::array> results;
|
||||
results.reserve(outputs.size());
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
auto numpy_dtype = FDDataTypeToNumpyDataType(outputs[i].dtype);
|
||||
results.emplace_back(pybind11::array(numpy_dtype, outputs[i].shape));
|
||||
memcpy(results[i].mutable_data(), outputs[i].data.data(),
|
||||
outputs[i].Numel() * FDDataTypeSize(outputs[i].dtype));
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
} // namespace fastdeploy
|
Reference in New Issue
Block a user