mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
Move cpp code to directory csrcs
(#42)
* move cpp code to csrcs * move cpp code to csrcs
This commit is contained in:
@@ -1,105 +0,0 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/backends/paddle/paddle_backend.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
|
||||
void PaddleBackend::BuildOption(const PaddleBackendOption& option) {
|
||||
if (option.use_gpu) {
|
||||
config_.EnableUseGpu(option.gpu_mem_init_size, option.gpu_id);
|
||||
} else {
|
||||
config_.DisableGpu();
|
||||
if (option.enable_mkldnn) {
|
||||
config_.EnableMKLDNN();
|
||||
config_.SetMkldnnCacheCapacity(option.mkldnn_cache_size);
|
||||
}
|
||||
}
|
||||
config_.SetCpuMathLibraryNumThreads(option.cpu_thread_num);
|
||||
}
|
||||
|
||||
bool PaddleBackend::InitFromPaddle(const std::string& model_file,
|
||||
const std::string& params_file,
|
||||
const PaddleBackendOption& option) {
|
||||
if (initialized_) {
|
||||
FDERROR << "PaddleBackend is already initlized, cannot initialize again."
|
||||
<< std::endl;
|
||||
return false;
|
||||
}
|
||||
config_.SetModel(model_file, params_file);
|
||||
BuildOption(option);
|
||||
predictor_ = paddle_infer::CreatePredictor(config_);
|
||||
std::vector<std::string> input_names = predictor_->GetInputNames();
|
||||
std::vector<std::string> output_names = predictor_->GetOutputNames();
|
||||
for (size_t i = 0; i < input_names.size(); ++i) {
|
||||
auto handle = predictor_->GetInputHandle(input_names[i]);
|
||||
TensorInfo info;
|
||||
auto shape = handle->shape();
|
||||
info.shape.assign(shape.begin(), shape.end());
|
||||
info.dtype = PaddleDataTypeToFD(handle->type());
|
||||
info.name = input_names[i];
|
||||
inputs_desc_.emplace_back(info);
|
||||
}
|
||||
for (size_t i = 0; i < output_names.size(); ++i) {
|
||||
auto handle = predictor_->GetOutputHandle(output_names[i]);
|
||||
TensorInfo info;
|
||||
auto shape = handle->shape();
|
||||
info.shape.assign(shape.begin(), shape.end());
|
||||
info.dtype = PaddleDataTypeToFD(handle->type());
|
||||
info.name = output_names[i];
|
||||
outputs_desc_.emplace_back(info);
|
||||
}
|
||||
initialized_ = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
TensorInfo PaddleBackend::GetInputInfo(int index) {
|
||||
FDASSERT(index < NumInputs(), "The index:" + std::to_string(index) +
|
||||
" should less than the number of inputs:" +
|
||||
std::to_string(NumInputs()) + ".");
|
||||
return inputs_desc_[index];
|
||||
}
|
||||
|
||||
TensorInfo PaddleBackend::GetOutputInfo(int index) {
|
||||
FDASSERT(index < NumOutputs(),
|
||||
"The index:" + std::to_string(index) +
|
||||
" should less than the number of outputs:" +
|
||||
std::to_string(NumOutputs()) + ".");
|
||||
return outputs_desc_[index];
|
||||
}
|
||||
|
||||
bool PaddleBackend::Infer(std::vector<FDTensor>& inputs,
|
||||
std::vector<FDTensor>* outputs) {
|
||||
if (inputs.size() != inputs_desc_.size()) {
|
||||
FDERROR << "[PaddleBackend] Size of inputs(" << inputs.size()
|
||||
<< ") should keep same with the inputs of this model("
|
||||
<< inputs_desc_.size() << ")." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
auto handle = predictor_->GetInputHandle(inputs[i].name);
|
||||
ShareTensorFromCpu(handle.get(), inputs[i]);
|
||||
}
|
||||
|
||||
predictor_->Run();
|
||||
outputs->resize(outputs_desc_.size());
|
||||
for (size_t i = 0; i < outputs_desc_.size(); ++i) {
|
||||
auto handle = predictor_->GetOutputHandle(outputs_desc_[i].name);
|
||||
CopyTensorToCpu(handle, &((*outputs)[i]));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace fastdeploy
|
Reference in New Issue
Block a user