Move cpp code to directory csrcs (#42)

* move cpp code to csrcs

* move cpp code to csrcs
This commit is contained in:
Jason
2022-07-26 17:59:02 +08:00
committed by GitHub
parent 7fa3afa9de
commit ffbc5cc42d
128 changed files with 1 additions and 1 deletions

View File

@@ -0,0 +1,943 @@
/*
* Copyright (c) 1993-2022, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <array>
#include <chrono>
#include <cuda_profiler_api.h>
#include <functional>
#include <limits>
#include <memory>
#include <mutex>
#include <numeric>
#include <thread>
#include <utility>
#include <vector>
#if defined(__QNX__)
#include <sys/neutrino.h>
#include <sys/syspage.h>
#endif
#include "NvInfer.h"
#include "ErrorRecorder.h"
#include "logger.h"
#include "sampleDevice.h"
#include "sampleEngines.h"
#include "sampleInference.h"
#include "sampleOptions.h"
#include "sampleReporting.h"
#include "sampleUtils.h"
namespace sample {
template <class MapType, class EngineType>
bool validateTensorNames(const MapType& map, const EngineType* engine,
const int32_t endBindingIndex) {
// Check if the provided input tensor names match the input tensors of the
// engine.
// Throw an error if the provided input tensor names cannot be found because
// it implies a potential typo.
for (const auto& item : map) {
bool tensorNameFound{false};
for (int32_t b = 0; b < endBindingIndex; ++b) {
if (engine->bindingIsInput(b) &&
engine->getBindingName(b) == item.first) {
tensorNameFound = true;
break;
}
}
if (!tensorNameFound) {
sample::gLogError
<< "Cannot find input tensor with name \"" << item.first
<< "\" in the engine bindings! "
<< "Please make sure the input tensor names are correct."
<< std::endl;
return false;
}
}
return true;
}
template <class EngineType, class ContextType> class FillBindingClosure {
private:
using InputsMap = std::unordered_map<std::string, std::string>;
using BindingsVector = std::vector<std::unique_ptr<Bindings>>;
EngineType const* engine;
ContextType const* context;
InputsMap const& inputs;
BindingsVector& bindings;
int32_t batch;
int32_t endBindingIndex;
void fillOneBinding(int32_t bindingIndex, int64_t vol) {
auto const dims = getDims(bindingIndex);
auto const name = engine->getBindingName(bindingIndex);
auto const isInput = engine->bindingIsInput(bindingIndex);
auto const dataType = engine->getBindingDataType(bindingIndex);
auto const* bindingInOutStr = isInput ? "input" : "output";
for (auto& binding : bindings) {
const auto input = inputs.find(name);
if (isInput && input != inputs.end()) {
sample::gLogInfo << "Using values loaded from " << input->second
<< " for input " << name << std::endl;
binding->addBinding(bindingIndex, name, isInput, vol, dataType,
input->second);
} else {
sample::gLogInfo << "Using random values for " << bindingInOutStr << " "
<< name << std::endl;
binding->addBinding(bindingIndex, name, isInput, vol, dataType);
}
sample::gLogInfo << "Created " << bindingInOutStr << " binding for "
<< name << " with dimensions " << dims << std::endl;
}
}
bool fillAllBindings(int32_t batch, int32_t endBindingIndex) {
if (!validateTensorNames(inputs, engine, endBindingIndex)) {
sample::gLogError << "Invalid tensor names found in --loadInputs flag."
<< std::endl;
return false;
}
for (int32_t b = 0; b < endBindingIndex; b++) {
auto const dims = getDims(b);
auto const comps = engine->getBindingComponentsPerElement(b);
auto const strides = context->getStrides(b);
int32_t const vectorDimIndex = engine->getBindingVectorizedDim(b);
auto const vol = volume(dims, strides, vectorDimIndex, comps, batch);
fillOneBinding(b, vol);
}
return true;
}
Dims getDims(int32_t bindingIndex);
public:
FillBindingClosure(EngineType const* _engine, ContextType const* _context,
InputsMap const& _inputs, BindingsVector& _bindings,
int32_t _batch, int32_t _endBindingIndex)
: engine(_engine), context(_context), inputs(_inputs),
bindings(_bindings), batch(_batch), endBindingIndex(_endBindingIndex) {}
bool operator()() { return fillAllBindings(batch, endBindingIndex); }
};
template <>
Dims FillBindingClosure<nvinfer1::ICudaEngine, nvinfer1::IExecutionContext>::
getDims(int32_t bindingIndex) {
return context->getBindingDimensions(bindingIndex);
}
template <>
Dims FillBindingClosure<
nvinfer1::safe::ICudaEngine,
nvinfer1::safe::IExecutionContext>::getDims(int32_t bindingIndex) {
return engine->getBindingDimensions(bindingIndex);
}
bool setUpInference(InferenceEnvironment& iEnv,
const InferenceOptions& inference) {
int32_t device{};
cudaCheck(cudaGetDevice(&device));
cudaDeviceProp properties;
cudaCheck(cudaGetDeviceProperties(&properties, device));
// Use managed memory on integrated devices when transfers are skipped
// and when it is explicitly requested on the commandline.
bool useManagedMemory{(inference.skipTransfers && properties.integrated) ||
inference.useManaged};
using FillSafeBindings =
FillBindingClosure<nvinfer1::safe::ICudaEngine,
nvinfer1::safe::IExecutionContext>;
if (iEnv.safe) {
ASSERT(sample::hasSafeRuntime());
auto* safeEngine = iEnv.safeEngine.get();
for (int32_t s = 0; s < inference.streams; ++s) {
iEnv.safeContext.emplace_back(safeEngine->createExecutionContext());
iEnv.bindings.emplace_back(new Bindings(useManagedMemory));
}
const int32_t nBindings = safeEngine->getNbBindings();
auto const* safeContext = iEnv.safeContext.front().get();
// batch is set to 1 because safety only support explicit batch.
return FillSafeBindings(iEnv.safeEngine.get(), safeContext,
inference.inputs, iEnv.bindings, 1, nBindings)();
}
using FillStdBindings =
FillBindingClosure<nvinfer1::ICudaEngine, nvinfer1::IExecutionContext>;
for (int32_t s = 0; s < inference.streams; ++s) {
auto ec = iEnv.engine->createExecutionContext();
if (ec == nullptr) {
sample::gLogError << "Unable to create execution context for stream " << s
<< "." << std::endl;
return false;
}
iEnv.context.emplace_back(ec);
iEnv.bindings.emplace_back(new Bindings(useManagedMemory));
}
if (iEnv.profiler) {
iEnv.context.front()->setProfiler(iEnv.profiler.get());
// Always run reportToProfiler() after enqueue launch
iEnv.context.front()->setEnqueueEmitsProfile(false);
}
const int32_t nOptProfiles = iEnv.engine->getNbOptimizationProfiles();
const int32_t nBindings = iEnv.engine->getNbBindings();
const int32_t bindingsInProfile =
nOptProfiles > 0 ? nBindings / nOptProfiles : 0;
const int32_t endBindingIndex =
bindingsInProfile ? bindingsInProfile : iEnv.engine->getNbBindings();
if (nOptProfiles > 1) {
sample::gLogWarning << "Multiple profiles are currently not supported. "
"Running with one profile."
<< std::endl;
}
// Make sure that the tensor names provided in command-line args actually
// exist in any of the engine bindings
// to avoid silent typos.
if (!validateTensorNames(inference.shapes, iEnv.engine.get(),
endBindingIndex)) {
sample::gLogError << "Invalid tensor names found in --shapes flag."
<< std::endl;
return false;
}
// Set all input dimensions before all bindings can be allocated
for (int32_t b = 0; b < endBindingIndex; ++b) {
if (iEnv.engine->bindingIsInput(b)) {
auto dims = iEnv.context.front()->getBindingDimensions(b);
const bool isScalar = dims.nbDims == 0;
const bool isDynamicInput =
std::any_of(dims.d, dims.d + dims.nbDims,
[](int32_t dim) { return dim == -1; }) ||
iEnv.engine->isShapeBinding(b);
if (isDynamicInput) {
auto shape = inference.shapes.find(iEnv.engine->getBindingName(b));
std::vector<int32_t> staticDims;
if (shape == inference.shapes.end()) {
// If no shape is provided, set dynamic dimensions to 1.
constexpr int32_t DEFAULT_DIMENSION = 1;
if (iEnv.engine->isShapeBinding(b)) {
if (isScalar) {
staticDims.push_back(1);
} else {
staticDims.resize(dims.d[0]);
std::fill(staticDims.begin(), staticDims.end(),
DEFAULT_DIMENSION);
}
} else {
staticDims.resize(dims.nbDims);
std::transform(dims.d, dims.d + dims.nbDims, staticDims.begin(),
[&](int32_t dimension) {
return dimension >= 0 ? dimension
: DEFAULT_DIMENSION;
});
}
sample::gLogWarning << "Dynamic dimensions required for input: "
<< iEnv.engine->getBindingName(b)
<< ", but no shapes were provided. Automatically "
"overriding shape to: "
<< staticDims << std::endl;
} else if (inference.inputs.count(shape->first) &&
iEnv.engine->isShapeBinding(b)) {
if (isScalar || dims.nbDims == 1) {
// Load shape tensor from file.
size_t const size = isScalar ? 1 : dims.d[0];
staticDims.resize(size);
auto const& filename = inference.inputs.at(shape->first);
auto dst = reinterpret_cast<char*>(staticDims.data());
loadFromFile(filename, dst,
size * sizeof(decltype(staticDims)::value_type));
} else {
sample::gLogWarning << "Cannot load shape tensor " << shape->first
<< " from file, "
<< "ND-Shape isn't supported yet" << std::endl;
// Fallback
staticDims = shape->second;
}
} else {
staticDims = shape->second;
}
for (auto& c : iEnv.context) {
if (iEnv.engine->isShapeBinding(b)) {
if (!c->setInputShapeBinding(b, staticDims.data())) {
return false;
}
} else {
if (!c->setBindingDimensions(b, toDims(staticDims))) {
return false;
}
}
}
}
}
}
auto* engine = iEnv.engine.get();
auto const* context = iEnv.context.front().get();
int32_t const batch =
engine->hasImplicitBatchDimension() ? inference.batch : 1;
return FillStdBindings(engine, context, inference.inputs, iEnv.bindings,
batch, endBindingIndex)();
}
namespace {
#if defined(__QNX__)
using TimePoint = double;
#else
using TimePoint = std::chrono::time_point<std::chrono::high_resolution_clock>;
#endif
TimePoint getCurrentTime() {
#if defined(__QNX__)
uint64_t const currentCycles = ClockCycles();
uint64_t const cyclesPerSecond = SYSPAGE_ENTRY(qtime)->cycles_per_sec;
// Return current timestamp in ms.
return static_cast<TimePoint>(currentCycles) * 1000. / cyclesPerSecond;
#else
return std::chrono::high_resolution_clock::now();
#endif
}
//!
//! \struct SyncStruct
//! \brief Threads synchronization structure
//!
struct SyncStruct {
std::mutex mutex;
TrtCudaStream mainStream;
TrtCudaEvent gpuStart{cudaEventBlockingSync};
TimePoint cpuStart{};
float sleep{};
};
struct Enqueue {
explicit Enqueue(nvinfer1::IExecutionContext& context, void** buffers)
: mContext(context), mBuffers(buffers) {}
nvinfer1::IExecutionContext& mContext;
void** mBuffers{};
};
//!
//! \class EnqueueImplicit
//! \brief Functor to enqueue inference with implict batch
//!
class EnqueueImplicit : private Enqueue {
public:
explicit EnqueueImplicit(nvinfer1::IExecutionContext& context, void** buffers,
int32_t batch)
: Enqueue(context, buffers), mBatch(batch) {}
bool operator()(TrtCudaStream& stream) const {
if (mContext.enqueue(mBatch, mBuffers, stream.get(), nullptr)) {
// Collecting layer timing info from current profile index of execution
// context
if (mContext.getProfiler() && !mContext.getEnqueueEmitsProfile() &&
!mContext.reportToProfiler()) {
gLogWarning
<< "Failed to collect layer timing info from previous enqueue()"
<< std::endl;
}
return true;
}
return false;
}
private:
int32_t mBatch;
};
//!
//! \class EnqueueExplicit
//! \brief Functor to enqueue inference with explict batch
//!
class EnqueueExplicit : private Enqueue {
public:
explicit EnqueueExplicit(nvinfer1::IExecutionContext& context, void** buffers)
: Enqueue(context, buffers) {}
bool operator()(TrtCudaStream& stream) const {
if (mContext.enqueueV2(mBuffers, stream.get(), nullptr)) {
// Collecting layer timing info from current profile index of execution
// context
if (mContext.getProfiler() && !mContext.getEnqueueEmitsProfile() &&
!mContext.reportToProfiler()) {
gLogWarning
<< "Failed to collect layer timing info from previous enqueueV2()"
<< std::endl;
}
return true;
}
return false;
}
};
//!
//! \class EnqueueGraph
//! \brief Functor to enqueue inference from CUDA Graph
//!
class EnqueueGraph {
public:
explicit EnqueueGraph(nvinfer1::IExecutionContext& context,
TrtCudaGraph& graph)
: mGraph(graph), mContext(context) {}
bool operator()(TrtCudaStream& stream) const {
if (mGraph.launch(stream)) {
// Collecting layer timing info from current profile index of execution
// context
if (mContext.getProfiler() && !mContext.reportToProfiler()) {
gLogWarning << "Failed to collect layer timing info from previous CUDA "
"graph launch"
<< std::endl;
}
return true;
}
return false;
}
TrtCudaGraph& mGraph;
nvinfer1::IExecutionContext& mContext;
};
//!
//! \class EnqueueSafe
//! \brief Functor to enqueue safe execution context
//!
class EnqueueSafe {
public:
explicit EnqueueSafe(nvinfer1::safe::IExecutionContext& context,
void** buffers)
: mContext(context), mBuffers(buffers) {}
bool operator()(TrtCudaStream& stream) const {
if (mContext.enqueueV2(mBuffers, stream.get(), nullptr)) {
return true;
}
return false;
}
nvinfer1::safe::IExecutionContext& mContext;
void** mBuffers{};
};
using EnqueueFunction = std::function<bool(TrtCudaStream&)>;
enum class StreamType : int32_t {
kINPUT = 0,
kCOMPUTE = 1,
kOUTPUT = 2,
kNUM = 3
};
enum class EventType : int32_t {
kINPUT_S = 0,
kINPUT_E = 1,
kCOMPUTE_S = 2,
kCOMPUTE_E = 3,
kOUTPUT_S = 4,
kOUTPUT_E = 5,
kNUM = 6
};
using MultiStream =
std::array<TrtCudaStream, static_cast<int32_t>(StreamType::kNUM)>;
using MultiEvent = std::array<std::unique_ptr<TrtCudaEvent>,
static_cast<int32_t>(EventType::kNUM)>;
using EnqueueTimes = std::array<TimePoint, 2>;
//!
//! \class Iteration
//! \brief Inference iteration and streams management
//!
template <class ContextType> class Iteration {
public:
Iteration(int32_t id, const InferenceOptions& inference, ContextType& context,
Bindings& bindings)
: mBindings(bindings), mStreamId(id), mDepth(1 + inference.overlap),
mActive(mDepth), mEvents(mDepth), mEnqueueTimes(mDepth),
mContext(&context) {
for (int32_t d = 0; d < mDepth; ++d) {
for (int32_t e = 0; e < static_cast<int32_t>(EventType::kNUM); ++e) {
mEvents[d][e].reset(new TrtCudaEvent(!inference.spin));
}
}
createEnqueueFunction(inference, context, bindings);
}
bool query(bool skipTransfers) {
if (mActive[mNext]) {
return true;
}
if (!skipTransfers) {
record(EventType::kINPUT_S, StreamType::kINPUT);
mBindings.transferInputToDevice(getStream(StreamType::kINPUT));
record(EventType::kINPUT_E, StreamType::kINPUT);
wait(EventType::kINPUT_E,
StreamType::kCOMPUTE); // Wait for input DMA before compute
}
record(EventType::kCOMPUTE_S, StreamType::kCOMPUTE);
recordEnqueueTime();
if (!mEnqueue(getStream(StreamType::kCOMPUTE))) {
return false;
}
recordEnqueueTime();
record(EventType::kCOMPUTE_E, StreamType::kCOMPUTE);
if (!skipTransfers) {
wait(EventType::kCOMPUTE_E,
StreamType::kOUTPUT); // Wait for compute before output DMA
record(EventType::kOUTPUT_S, StreamType::kOUTPUT);
mBindings.transferOutputToHost(getStream(StreamType::kOUTPUT));
record(EventType::kOUTPUT_E, StreamType::kOUTPUT);
}
mActive[mNext] = true;
moveNext();
return true;
}
float sync(const TimePoint& cpuStart, const TrtCudaEvent& gpuStart,
std::vector<InferenceTrace>& trace, bool skipTransfers) {
if (mActive[mNext]) {
if (skipTransfers) {
getEvent(EventType::kCOMPUTE_E).synchronize();
} else {
getEvent(EventType::kOUTPUT_E).synchronize();
}
trace.emplace_back(getTrace(cpuStart, gpuStart, skipTransfers));
mActive[mNext] = false;
return getEvent(EventType::kCOMPUTE_S) - gpuStart;
}
return 0;
}
void syncAll(const TimePoint& cpuStart, const TrtCudaEvent& gpuStart,
std::vector<InferenceTrace>& trace, bool skipTransfers) {
for (int32_t d = 0; d < mDepth; ++d) {
sync(cpuStart, gpuStart, trace, skipTransfers);
moveNext();
}
}
void wait(TrtCudaEvent& gpuStart) {
getStream(StreamType::kINPUT).wait(gpuStart);
}
void setInputData() {
mBindings.transferInputToDevice(getStream(StreamType::kINPUT));
}
void fetchOutputData() {
mBindings.transferOutputToHost(getStream(StreamType::kOUTPUT));
}
private:
void moveNext() { mNext = mDepth - 1 - mNext; }
TrtCudaStream& getStream(StreamType t) {
return mStream[static_cast<int32_t>(t)];
}
TrtCudaEvent& getEvent(EventType t) {
return *mEvents[mNext][static_cast<int32_t>(t)];
}
void record(EventType e, StreamType s) { getEvent(e).record(getStream(s)); }
void recordEnqueueTime() {
mEnqueueTimes[mNext][enqueueStart] = getCurrentTime();
enqueueStart = 1 - enqueueStart;
}
TimePoint getEnqueueTime(bool start) {
return mEnqueueTimes[mNext][start ? 0 : 1];
}
void wait(EventType e, StreamType s) { getStream(s).wait(getEvent(e)); }
InferenceTrace getTrace(const TimePoint& cpuStart,
const TrtCudaEvent& gpuStart, bool skipTransfers) {
float is = skipTransfers ? getEvent(EventType::kCOMPUTE_S) - gpuStart
: getEvent(EventType::kINPUT_S) - gpuStart;
float ie = skipTransfers ? getEvent(EventType::kCOMPUTE_S) - gpuStart
: getEvent(EventType::kINPUT_E) - gpuStart;
float os = skipTransfers ? getEvent(EventType::kCOMPUTE_E) - gpuStart
: getEvent(EventType::kOUTPUT_S) - gpuStart;
float oe = skipTransfers ? getEvent(EventType::kCOMPUTE_E) - gpuStart
: getEvent(EventType::kOUTPUT_E) - gpuStart;
return InferenceTrace(mStreamId,
std::chrono::duration<float, std::milli>(
getEnqueueTime(true) - cpuStart)
.count(),
std::chrono::duration<float, std::milli>(
getEnqueueTime(false) - cpuStart)
.count(),
is, ie, getEvent(EventType::kCOMPUTE_S) - gpuStart,
getEvent(EventType::kCOMPUTE_E) - gpuStart, os, oe);
}
void createEnqueueFunction(const InferenceOptions& inference,
nvinfer1::IExecutionContext& context,
Bindings& bindings) {
if (inference.batch) {
mEnqueue = EnqueueFunction(EnqueueImplicit(
context, mBindings.getDeviceBuffers(), inference.batch));
} else {
mEnqueue = EnqueueFunction(
EnqueueExplicit(context, mBindings.getDeviceBuffers()));
}
if (inference.graph) {
TrtCudaStream& stream = getStream(StreamType::kCOMPUTE);
// Avoid capturing initialization calls by executing the enqueue function
// at least
// once before starting CUDA graph capture.
const auto ret = mEnqueue(stream);
assert(ret);
stream.synchronize();
mGraph.beginCapture(stream);
// The built TRT engine may contain operations that are not permitted
// under CUDA graph capture mode.
// When the stream is capturing, the enqueue call may return false if the
// current CUDA graph capture fails.
if (mEnqueue(stream)) {
mGraph.endCapture(stream);
mEnqueue = EnqueueFunction(EnqueueGraph(context, mGraph));
} else {
mGraph.endCaptureOnError(stream);
// Ensure any CUDA error has been cleaned up.
cudaCheck(cudaGetLastError());
sample::gLogWarning << "The built TensorRT engine contains operations "
"that are not permitted under "
"CUDA graph capture mode."
<< std::endl;
sample::gLogWarning << "The specified --useCudaGraph flag has been "
"ignored. The inference will be "
"launched without using CUDA graph launch."
<< std::endl;
}
}
}
void createEnqueueFunction(const InferenceOptions&,
nvinfer1::safe::IExecutionContext& context,
Bindings&) {
mEnqueue =
EnqueueFunction(EnqueueSafe(context, mBindings.getDeviceBuffers()));
}
Bindings& mBindings;
TrtCudaGraph mGraph;
EnqueueFunction mEnqueue;
int32_t mStreamId{0};
int32_t mNext{0};
int32_t mDepth{2}; // default to double buffer to hide DMA transfers
std::vector<bool> mActive;
MultiStream mStream;
std::vector<MultiEvent> mEvents;
int32_t enqueueStart{0};
std::vector<EnqueueTimes> mEnqueueTimes;
ContextType* mContext{nullptr};
};
template <class ContextType>
bool inferenceLoop(
std::vector<std::unique_ptr<Iteration<ContextType>>>& iStreams,
const TimePoint& cpuStart, const TrtCudaEvent& gpuStart, int iterations,
float maxDurationMs, float warmupMs, std::vector<InferenceTrace>& trace,
bool skipTransfers, float idleMs) {
float durationMs = 0;
int32_t skip = 0;
for (int32_t i = 0; i < iterations + skip || durationMs < maxDurationMs;
++i) {
for (auto& s : iStreams) {
if (!s->query(skipTransfers)) {
return false;
}
}
for (auto& s : iStreams) {
durationMs = std::max(durationMs,
s->sync(cpuStart, gpuStart, trace, skipTransfers));
}
if (durationMs < warmupMs) // Warming up
{
if (durationMs) // Skip complete iterations
{
++skip;
}
continue;
}
if (idleMs != 0.F) {
std::this_thread::sleep_for(
std::chrono::duration<float, std::milli>(idleMs));
}
}
for (auto& s : iStreams) {
s->syncAll(cpuStart, gpuStart, trace, skipTransfers);
}
return true;
}
template <class ContextType>
void inferenceExecution(const InferenceOptions& inference,
InferenceEnvironment& iEnv, SyncStruct& sync,
const int32_t threadIdx, const int32_t streamsPerThread,
int32_t device, std::vector<InferenceTrace>& trace) {
float warmupMs = inference.warmup;
float durationMs = inference.duration * 1000.F + warmupMs;
cudaCheck(cudaSetDevice(device));
std::vector<std::unique_ptr<Iteration<ContextType>>> iStreams;
for (int32_t s = 0; s < streamsPerThread; ++s) {
const int32_t streamId{threadIdx * streamsPerThread + s};
auto* iteration = new Iteration<ContextType>(
streamId, inference, *iEnv.template getContext<ContextType>(streamId),
*iEnv.bindings[streamId]);
if (inference.skipTransfers) {
iteration->setInputData();
}
iStreams.emplace_back(iteration);
}
for (auto& s : iStreams) {
s->wait(sync.gpuStart);
}
std::vector<InferenceTrace> localTrace;
if (!inferenceLoop(iStreams, sync.cpuStart, sync.gpuStart,
inference.iterations, durationMs, warmupMs, localTrace,
inference.skipTransfers, inference.idle)) {
iEnv.error = true;
}
if (inference.skipTransfers) {
for (auto& s : iStreams) {
s->fetchOutputData();
}
}
sync.mutex.lock();
trace.insert(trace.end(), localTrace.begin(), localTrace.end());
sync.mutex.unlock();
}
inline std::thread makeThread(const InferenceOptions& inference,
InferenceEnvironment& iEnv, SyncStruct& sync,
int32_t threadIdx, int32_t streamsPerThread,
int32_t device,
std::vector<InferenceTrace>& trace) {
if (iEnv.safe) {
ASSERT(sample::hasSafeRuntime());
return std::thread(inferenceExecution<nvinfer1::safe::IExecutionContext>,
std::cref(inference), std::ref(iEnv), std::ref(sync),
threadIdx, streamsPerThread, device, std::ref(trace));
}
return std::thread(inferenceExecution<nvinfer1::IExecutionContext>,
std::cref(inference), std::ref(iEnv), std::ref(sync),
threadIdx, streamsPerThread, device, std::ref(trace));
}
} // namespace
bool runInference(const InferenceOptions& inference, InferenceEnvironment& iEnv,
int32_t device, std::vector<InferenceTrace>& trace) {
cudaCheck(cudaProfilerStart());
trace.resize(0);
SyncStruct sync;
sync.sleep = inference.sleep;
sync.mainStream.sleep(&sync.sleep);
sync.cpuStart = getCurrentTime();
sync.gpuStart.record(sync.mainStream);
// When multiple streams are used, trtexec can run inference in two modes:
// (1) if inference.threads is true, then run each stream on each thread.
// (2) if inference.threads is false, then run all streams on the same thread.
const int32_t numThreads = inference.threads ? inference.streams : 1;
const int32_t streamsPerThread = inference.threads ? 1 : inference.streams;
std::vector<std::thread> threads;
for (int32_t threadIdx = 0; threadIdx < numThreads; ++threadIdx) {
threads.emplace_back(makeThread(inference, iEnv, sync, threadIdx,
streamsPerThread, device, trace));
}
for (auto& th : threads) {
th.join();
}
cudaCheck(cudaProfilerStop());
auto cmpTrace = [](const InferenceTrace& a, const InferenceTrace& b) {
return a.h2dStart < b.h2dStart;
};
std::sort(trace.begin(), trace.end(), cmpTrace);
return !iEnv.error;
}
namespace {
size_t reportGpuMemory() {
static size_t prevFree{0};
size_t free{0};
size_t total{0};
size_t newlyAllocated{0};
cudaCheck(cudaMemGetInfo(&free, &total));
sample::gLogInfo << "Free GPU memory = " << free / 1024.0_MiB << " GiB";
if (prevFree != 0) {
newlyAllocated = (prevFree - free);
sample::gLogInfo << ", newly allocated GPU memory = "
<< newlyAllocated / 1024.0_MiB << " GiB";
}
sample::gLogInfo << ", total GPU memory = " << total / 1024.0_MiB << " GiB"
<< std::endl;
prevFree = free;
return newlyAllocated;
}
} // namespace
//! Returns true if deserialization is slower than expected or fails.
bool timeDeserialize(InferenceEnvironment& iEnv) {
constexpr int32_t kNB_ITERS{20};
std::unique_ptr<IRuntime> rt{
createInferRuntime(sample::gLogger.getTRTLogger())};
std::unique_ptr<ICudaEngine> engine;
std::unique_ptr<safe::IRuntime> safeRT{
sample::createSafeInferRuntime(sample::gLogger.getTRTLogger())};
std::unique_ptr<safe::ICudaEngine> safeEngine;
if (iEnv.safe) {
ASSERT(sample::hasSafeRuntime() && safeRT != nullptr);
safeRT->setErrorRecorder(&gRecorder);
}
auto timeDeserializeFn = [&]() -> float {
bool deserializeOK{false};
engine.reset(nullptr);
safeEngine.reset(nullptr);
auto startClock = std::chrono::high_resolution_clock::now();
if (iEnv.safe) {
safeEngine.reset(safeRT->deserializeCudaEngine(iEnv.engineBlob.data(),
iEnv.engineBlob.size()));
deserializeOK = (safeEngine != nullptr);
} else {
engine.reset(rt->deserializeCudaEngine(iEnv.engineBlob.data(),
iEnv.engineBlob.size(), nullptr));
deserializeOK = (engine != nullptr);
}
auto endClock = std::chrono::high_resolution_clock::now();
// return NAN if deserialization failed.
return deserializeOK
? std::chrono::duration<float, std::milli>(endClock - startClock)
.count()
: NAN;
};
// Warmup the caches to make sure that cache thrashing isn't throwing off the
// results
{
sample::gLogInfo << "Begin deserialization warmup..." << std::endl;
for (int32_t i = 0, e = 2; i < e; ++i) {
timeDeserializeFn();
}
}
sample::gLogInfo << "Begin deserialization engine timing..." << std::endl;
float const first = timeDeserializeFn();
// Check if first deserialization suceeded.
if (std::isnan(first)) {
sample::gLogError << "Engine deserialization failed." << std::endl;
return true;
}
sample::gLogInfo << "First deserialization time = " << first
<< " milliseconds" << std::endl;
// Record initial gpu memory state.
reportGpuMemory();
float totalTime{0.F};
for (int32_t i = 0; i < kNB_ITERS; ++i) {
totalTime += timeDeserializeFn();
}
const auto averageTime = totalTime / kNB_ITERS;
// reportGpuMemory sometimes reports zero after a single deserialization of a
// small engine,
// so use the size of memory for all the iterations.
const auto totalEngineSizeGpu = reportGpuMemory();
sample::gLogInfo << "Total deserialization time = " << totalTime
<< " milliseconds in " << kNB_ITERS
<< " iterations, average time = " << averageTime
<< " milliseconds, first time = " << first
<< " milliseconds." << std::endl;
sample::gLogInfo << "Deserialization Bandwidth = "
<< 1E-6 * totalEngineSizeGpu / totalTime << " GB/s"
<< std::endl;
// If the first deserialization is more than tolerance slower than
// the average deserialization, return true, which means an error occurred.
// The tolerance is set to 2x since the deserialization time is quick and
// susceptible
// to caching issues causing problems in the first timing.
const auto tolerance = 2.0F;
const bool isSlowerThanExpected = first > averageTime * tolerance;
if (isSlowerThanExpected) {
sample::gLogInfo << "First deserialization time divided by average time is "
<< (first / averageTime) << ". Exceeds tolerance of "
<< tolerance << "x." << std::endl;
}
return isSlowerThanExpected;
}
std::string getLayerInformation(const InferenceEnvironment& iEnv,
nvinfer1::LayerInformationFormat format) {
auto runtime = std::unique_ptr<IRuntime>(
createInferRuntime(sample::gLogger.getTRTLogger()));
auto inspector =
std::unique_ptr<IEngineInspector>(iEnv.engine->createEngineInspector());
if (!iEnv.context.empty()) {
inspector->setExecutionContext(iEnv.context.front().get());
}
std::string result = inspector->getEngineInformation(format);
return result;
}
} // namespace sample