mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-08 18:11:00 +08:00
fix num_seqs (#3396)
This commit is contained in:
@@ -256,7 +256,9 @@ class GPUModelRunner(ModelRunnerBase):
|
|||||||
)
|
)
|
||||||
|
|
||||||
input_ids = request.prompt_token_ids + request.output_token_ids
|
input_ids = request.prompt_token_ids + request.output_token_ids
|
||||||
logger.debug(f"Handle prefill request {request} at idx {idx} prefill_start_index {prefill_start_index} prefill_end_index {prefill_end_index} need_prefilled_token_num {len(input_ids)}")
|
logger.debug(
|
||||||
|
f"Handle prefill request {request} at idx {idx} prefill_start_index {prefill_start_index} prefill_end_index {prefill_end_index} need_prefilled_token_num {len(input_ids)}"
|
||||||
|
)
|
||||||
self.share_inputs["input_ids"][idx : idx + 1, :length] = np.array(
|
self.share_inputs["input_ids"][idx : idx + 1, :length] = np.array(
|
||||||
input_ids[prefill_start_index:prefill_end_index]
|
input_ids[prefill_start_index:prefill_end_index]
|
||||||
)
|
)
|
||||||
@@ -617,7 +619,9 @@ class GPUModelRunner(ModelRunnerBase):
|
|||||||
self.share_inputs["max_length"] = paddle.full(
|
self.share_inputs["max_length"] = paddle.full(
|
||||||
[max_num_seqs, 1], self.model_config.max_model_len, dtype="int64"
|
[max_num_seqs, 1], self.model_config.max_model_len, dtype="int64"
|
||||||
)
|
)
|
||||||
self.seq_lens_this_time_buffer = paddle.full(max_num_seqs, 0, dtype="int32")
|
self.seq_lens_this_time_buffer = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||||
|
if self.fd_config.parallel_config.enable_expert_parallel:
|
||||||
|
self.share_inputs["seq_lens_this_time"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||||
self.share_inputs["seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
self.share_inputs["seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||||
self.share_inputs["seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
self.share_inputs["seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||||
self.share_inputs["step_seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
self.share_inputs["step_seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||||
|
@@ -244,6 +244,7 @@ class PaddleDisWorkerProc:
|
|||||||
Tmp loop function for ep utill DP is supported
|
Tmp loop function for ep utill DP is supported
|
||||||
"""
|
"""
|
||||||
while True:
|
while True:
|
||||||
|
num_running_requests = 0
|
||||||
self.worker_healthy_live_signal.value[self.local_rank % self.max_chips_per_node] = int(time.time())
|
self.worker_healthy_live_signal.value[self.local_rank % self.max_chips_per_node] = int(time.time())
|
||||||
|
|
||||||
if self.fd_config.parallel_config.tensor_parallel_rank == 0 and self.task_queue.num_tasks() > 0:
|
if self.fd_config.parallel_config.tensor_parallel_rank == 0 and self.task_queue.num_tasks() > 0:
|
||||||
@@ -272,6 +273,7 @@ class PaddleDisWorkerProc:
|
|||||||
self.nnode = int((self.parallel_config.tensor_parallel_size + 7) // 8)
|
self.nnode = int((self.parallel_config.tensor_parallel_size + 7) // 8)
|
||||||
mp_num_per_node = self.parallel_config.tensor_parallel_size // self.nnode
|
mp_num_per_node = self.parallel_config.tensor_parallel_size // self.nnode
|
||||||
req_ids = []
|
req_ids = []
|
||||||
|
num_running_requests = 0
|
||||||
while True:
|
while True:
|
||||||
if self.local_rank == 0:
|
if self.local_rank == 0:
|
||||||
if self.model_weights_status.value[0] != 0:
|
if self.model_weights_status.value[0] != 0:
|
||||||
|
Reference in New Issue
Block a user